Limit groups for relatively hyperbolic groups, II: Makanin-Razborov diagrams
Geometry & topology, Tome 9 (2005) no. 4, pp. 2319-2358.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Γ be a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. We construct Makanin–Razborov diagrams for Γ. We also prove that every system of equations over Γ is equivalent to a finite subsystem, and a number of structural results about Γ–limit groups.

DOI : 10.2140/gt.2005.9.2319
Keywords: relatively hyperbolic groups, limit groups, $\mathbb{R}$–trees

Groves, Daniel 1

1 Department of Mathematics, California Institute of Technology, Pasadena, California 91125, USA
@article{GT_2005_9_4_a14,
     author = {Groves, Daniel},
     title = {Limit groups for relatively hyperbolic groups, {II:} {Makanin-Razborov} diagrams},
     journal = {Geometry & topology},
     pages = {2319--2358},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.2319},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2319/}
}
TY  - JOUR
AU  - Groves, Daniel
TI  - Limit groups for relatively hyperbolic groups, II: Makanin-Razborov diagrams
JO  - Geometry & topology
PY  - 2005
SP  - 2319
EP  - 2358
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2319/
DO  - 10.2140/gt.2005.9.2319
ID  - GT_2005_9_4_a14
ER  - 
%0 Journal Article
%A Groves, Daniel
%T Limit groups for relatively hyperbolic groups, II: Makanin-Razborov diagrams
%J Geometry & topology
%D 2005
%P 2319-2358
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2319/
%R 10.2140/gt.2005.9.2319
%F GT_2005_9_4_a14
Groves, Daniel. Limit groups for relatively hyperbolic groups, II: Makanin-Razborov diagrams. Geometry & topology, Tome 9 (2005) no. 4, pp. 2319-2358. doi : 10.2140/gt.2005.9.2319. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2319/

[1] E Alibegović, A combination theorem for relatively hyperbolic groups, Bull. London Math. Soc. 37 (2005) 459

[2] E Alibegović, Makanin–Razborov diagrams for limit groups, Geom. Topol. 11 (2007) 643

[3] M Bestvina, M Feighn, Bounding the complexity of simplicial group actions on trees, Invent. Math. 103 (1991) 449

[4] M Bestvina, M Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995) 287

[5] M Bestvina, M Feighn, Notes on Sela's work: limit groups and Makanin–Razborov diagrams, prepring

[6] M Bestvina, Questions in geometric group theory

[7] B Bowditch, Relatively hyperbolic groups, preprint

[8] F Dahmani, Classifying spaces and boundaries for relatively hyperbolic groups, Proc. London Math. Soc. $(3)$ 86 (2003) 666

[9] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933

[10] F Dahmani, Accidental parabolics and relatively hyperbolic groups, Israel J. Math. 153 (2006) 93

[11] F Dahmani, On equations in relatively hyperbolic groups, preprint

[12] C Druţu, M Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959

[13] C Druţu, M Sapir, Relatively hyperbolic groups with rapid decay property, Int. Math. Res. Not. (2005) 1181

[14] M J Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449

[15] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810

[16] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[17] D Groves, Limits of (certain) CAT(0) groups I: Compactification, Algebr. Geom. Topol. 5 (2005) 1325

[18] D Groves, Limits of certain CAT(0) groups II: The Hopf property and the shortening argument

[19] D Groves, Limit groups for relatively hyperbolic groups I: The basic tools

[20] V S Guba, Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems, Mat. Zametki 40 (1986) 321, 428

[21] G C Hruska, Nonpositively curved spaces with isolated flats, PhD thesis, Cornell University (2002)

[22] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group I: Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472

[23] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group II: Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998) 517

[24] D V Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006)

[25] E Rips, Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982) 45

[26] E Rips, Z Sela, Structure and rigidity in hyperbolic groups I, Geom. Funct. Anal. 4 (1994) 337

[27] E Rips, Z Sela, Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. $(2)$ 146 (1997) 53

[28] Z Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997) 527

[29] Z Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups II, Geom. Funct. Anal. 7 (1997) 561

[30] Z Sela, Endomorphisms of hyperbolic groups I: The Hopf property, Topology 38 (1999) 301

[31] Z Sela, Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31

[32] Z Sela, Diophantine geometry over groups VII: The elementary theory of a hyperbolic group, preprint

[33] Z Sela, Diophantine geometry over groups: a list of research problems

[34] J P Serre, Trees, Springer (1980)

[35] A Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004) 41

Cité par Sources :