Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Gluing two manifolds and with a common boundary yields a closed manifold . Extending to formal linear combinations yields a sesquilinear pairing with values in (formal linear combinations of) closed manifolds. Topological quantum field theory (TQFT) represents this universal pairing onto a finite dimensional quotient pairing with values in which in physically motivated cases is positive definite. To see if such a “unitary" TQFT can potentially detect any nontrivial , we ask if whenever . If this is the case, we call the pairing positive. The question arises for each dimension . We find positive for and and not positive for . We conjecture that is also positive. Similar questions may be phrased for (manifold, submanifold) pairs and manifolds with other additional structure. The results in dimension 4 imply that unitary TQFTs cannot distinguish homotopy equivalent simply connected 4–manifolds, nor can they distinguish smoothly –cobordant 4–manifolds. This may illuminate the difficulties that have been met by several authors in their attempts to formulate unitary TQFTs for . There is a further physical implication of this paper. Whereas 3–dimensional Chern–Simons theory appears to be well-encoded within 2–dimensional quantum physics, e.g. in the fractional quantum Hall effect, Donaldson–Seiberg–Witten theory cannot be captured by a 3–dimensional quantum system. The positivity of the physical Hilbert spaces means they cannot see null vectors of the universal pairing; such vectors must map to zero.
Freedman, Michael H 1 ; Kitaev, Alexei 2 ; Nayak, Chetan 3 ; Slingerland, Johannes K 1 ; Walker, Kevin 1 ; Wang, Zhenghan 4
@article{GT_2005_9_4_a13, author = {Freedman, Michael H and Kitaev, Alexei and Nayak, Chetan and Slingerland, Johannes K and Walker, Kevin and Wang, Zhenghan}, title = {Universal manifold pairings and positivity}, journal = {Geometry & topology}, pages = {2303--2317}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2005}, doi = {10.2140/gt.2005.9.2303}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2303/} }
TY - JOUR AU - Freedman, Michael H AU - Kitaev, Alexei AU - Nayak, Chetan AU - Slingerland, Johannes K AU - Walker, Kevin AU - Wang, Zhenghan TI - Universal manifold pairings and positivity JO - Geometry & topology PY - 2005 SP - 2303 EP - 2317 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2303/ DO - 10.2140/gt.2005.9.2303 ID - GT_2005_9_4_a13 ER -
%0 Journal Article %A Freedman, Michael H %A Kitaev, Alexei %A Nayak, Chetan %A Slingerland, Johannes K %A Walker, Kevin %A Wang, Zhenghan %T Universal manifold pairings and positivity %J Geometry & topology %D 2005 %P 2303-2317 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2303/ %R 10.2140/gt.2005.9.2303 %F GT_2005_9_4_a13
Freedman, Michael H; Kitaev, Alexei; Nayak, Chetan; Slingerland, Johannes K; Walker, Kevin; Wang, Zhenghan. Universal manifold pairings and positivity. Geometry & topology, Tome 9 (2005) no. 4, pp. 2303-2317. doi : 10.2140/gt.2005.9.2303. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2303/
[1] The geometry and physics of knots, Lezioni Lincee., Cambridge University Press (1990)
,[2] Free groups and handlebodies, Proc. Amer. Math. Soc. 16 (1965) 192
, ,[3] A fake compact contractible 4–manifold, J. Differential Geom. 33 (1991) 335
,[4] Mazur manifolds, Michigan Math. J. 26 (1979) 259
, ,[5] A potential smooth counterexample in dimension 4 to the Poincaré conjecture, the Schoenflies conjecture, and the Andrews–Curtis conjecture, Topology 24 (1985) 375
, ,[6] Lower bounds on volumes of hyperbolic Haken 3–manifolds, J. Amer. Math. Soc. 20 (2007) 1053
, , ,[7] Three lectures on new-infinite constructions in 4–dimensional manifolds, from: "À la recherche de la topologie perdue", Progr. Math. 62, Birkhäuser (1986) 201
,[8] A decomposition theorem for $h$–cobordant smooth simply-connected compact 4–manifolds, Invent. Math. 123 (1996) 343
, , , ,[9] The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357
,[10] Topology of 4–manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)
, ,[11] The topology of 4–manifolds, Lecture Notes in Mathematics 1374, Springer (1989)
,[12] Akbulut's corks and $h$–cobordisms of smooth, simply connected 4–manifolds, Turkish J. Math. 20 (1996) 85
,[13] A decomposition of smooth simply-connected $h$–cobordant 4–manifolds, J. Differential Geom. 44 (1996) 571
,[14] A unique decomposition theorem for 3–manifolds, Amer. J. Math. 84 (1962) 1
,[15] Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949) 57
,[16] Heegaard–Zerlegungen der 3–Sphäre, Topology 7 (1968) 195
,[17] The self-intersections of a smooth $n$–manifold in $2n$–space, Ann. of Math. $(2)$ 45 (1944) 220
,Cité par Sources :