Universal manifold pairings and positivity
Geometry & topology, Tome 9 (2005) no. 4, pp. 2303-2317.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Gluing two manifolds M1 and M2 with a common boundary S yields a closed manifold M. Extending to formal linear combinations x = ΣaiMi yields a sesquilinear pairing p = , with values in (formal linear combinations of) closed manifolds. Topological quantum field theory (TQFT) represents this universal pairing p onto a finite dimensional quotient pairing q with values in which in physically motivated cases is positive definite. To see if such a “unitary" TQFT can potentially detect any nontrivial x, we ask if x,x0 whenever x0. If this is the case, we call the pairing p positive. The question arises for each dimension d = 0,1,2,. We find p(d) positive for d = 0,1, and 2 and not positive for d = 4. We conjecture that p(3) is also positive. Similar questions may be phrased for (manifold, submanifold) pairs and manifolds with other additional structure. The results in dimension 4 imply that unitary TQFTs cannot distinguish homotopy equivalent simply connected 4–manifolds, nor can they distinguish smoothly s–cobordant 4–manifolds. This may illuminate the difficulties that have been met by several authors in their attempts to formulate unitary TQFTs for d = 3 + 1. There is a further physical implication of this paper. Whereas 3–dimensional Chern–Simons theory appears to be well-encoded within 2–dimensional quantum physics, e.g. in the fractional quantum Hall effect, Donaldson–Seiberg–Witten theory cannot be captured by a 3–dimensional quantum system. The positivity of the physical Hilbert spaces means they cannot see null vectors of the universal pairing; such vectors must map to zero.

DOI : 10.2140/gt.2005.9.2303
Keywords: manifold pairing, unitary, positivity, TQFT, $s$–cobordism

Freedman, Michael H 1 ; Kitaev, Alexei 2 ; Nayak, Chetan 3 ; Slingerland, Johannes K 1 ; Walker, Kevin 1 ; Wang, Zhenghan 4

1 Microsoft Research, 1 Microsoft Way, Redmond, Washington 98052, USA
2 California Institute of Technology, Pasadena, California 91125, USA
3 Microsoft Research, 1 Microsoft Way, Redmond, Washington 98052, USA, Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547, USA
4 Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA
@article{GT_2005_9_4_a13,
     author = {Freedman, Michael H and Kitaev, Alexei and Nayak, Chetan and Slingerland, Johannes K and Walker, Kevin and Wang, Zhenghan},
     title = {Universal manifold pairings and positivity},
     journal = {Geometry & topology},
     pages = {2303--2317},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.2303},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2303/}
}
TY  - JOUR
AU  - Freedman, Michael H
AU  - Kitaev, Alexei
AU  - Nayak, Chetan
AU  - Slingerland, Johannes K
AU  - Walker, Kevin
AU  - Wang, Zhenghan
TI  - Universal manifold pairings and positivity
JO  - Geometry & topology
PY  - 2005
SP  - 2303
EP  - 2317
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2303/
DO  - 10.2140/gt.2005.9.2303
ID  - GT_2005_9_4_a13
ER  - 
%0 Journal Article
%A Freedman, Michael H
%A Kitaev, Alexei
%A Nayak, Chetan
%A Slingerland, Johannes K
%A Walker, Kevin
%A Wang, Zhenghan
%T Universal manifold pairings and positivity
%J Geometry & topology
%D 2005
%P 2303-2317
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2303/
%R 10.2140/gt.2005.9.2303
%F GT_2005_9_4_a13
Freedman, Michael H; Kitaev, Alexei; Nayak, Chetan; Slingerland, Johannes K; Walker, Kevin; Wang, Zhenghan. Universal manifold pairings and positivity. Geometry & topology, Tome 9 (2005) no. 4, pp. 2303-2317. doi : 10.2140/gt.2005.9.2303. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2303/

[1] M Atiyah, The geometry and physics of knots, Lezioni Lincee., Cambridge University Press (1990)

[2] J J Andrews, M L Curtis, Free groups and handlebodies, Proc. Amer. Math. Soc. 16 (1965) 192

[3] S Akbulut, A fake compact contractible 4–manifold, J. Differential Geom. 33 (1991) 335

[4] S Akbulut, R Kirby, Mazur manifolds, Michigan Math. J. 26 (1979) 259

[5] S Akbulut, R Kirby, A potential smooth counterexample in dimension 4 to the Poincaré conjecture, the Schoenflies conjecture, and the Andrews–Curtis conjecture, Topology 24 (1985) 375

[6] I Agol, P A Storm, W P Thurston, Lower bounds on volumes of hyperbolic Haken 3–manifolds, J. Amer. Math. Soc. 20 (2007) 1053

[7] A J Casson, Three lectures on new-infinite constructions in 4–dimensional manifolds, from: "À la recherche de la topologie perdue", Progr. Math. 62, Birkhäuser (1986) 201

[8] C L Curtis, M H Freedman, W C Hsiang, R Stong, A decomposition theorem for $h$–cobordant smooth simply-connected compact 4–manifolds, Invent. Math. 123 (1996) 343

[9] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[10] M H Freedman, F Quinn, Topology of 4–manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)

[11] R C Kirby, The topology of 4–manifolds, Lecture Notes in Mathematics 1374, Springer (1989)

[12] R Kirby, Akbulut's corks and $h$–cobordisms of smooth, simply connected 4–manifolds, Turkish J. Math. 20 (1996) 85

[13] R Matveyev, A decomposition of smooth simply-connected $h$–cobordant 4–manifolds, J. Differential Geom. 44 (1996) 571

[14] J Milnor, A unique decomposition theorem for 3–manifolds, Amer. J. Math. 84 (1962) 1

[15] H Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949) 57

[16] F Waldhausen, Heegaard–Zerlegungen der 3–Sphäre, Topology 7 (1968) 195

[17] H Whitney, The self-intersections of a smooth $n$–manifold in $2n$–space, Ann. of Math. $(2)$ 45 (1944) 220

Cité par Sources :