A splitting formula for the spectral flow of the odd signature operator on 3–manifolds coupled to a path of SU(2) connections
Geometry & topology, Tome 9 (2005) no. 4, pp. 2261-2302.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We establish a splitting formula for the spectral flow of the odd signature operator on a closed 3–manifold M coupled to a path of SU(2) connections, provided M = S X, where S is the solid torus. It describes the spectral flow on M in terms of the spectral flow on S, the spectral flow on X (with certain Atiyah–Patodi–Singer boundary conditions), and two correction terms which depend only on the endpoints.

Our result improves on other splitting theorems by removing assumptions on the non-resonance level of the odd signature operator or the dimension of the kernel of the tangential operator, and allows progress towards a conjecture by Lisa Jeffrey in her work on Witten’s 3–manifold invariants in the context of the asymptotic expansion conjecture.

DOI : 10.2140/gt.2005.9.2261
Keywords: spectral flow, odd signature operator, gauge theory, Chern–Simons theory, Atiyah–Patodi–Singer boundary conditions, Maslov index

Himpel, Benjamin 1

1 Mathematisches Institut, Universität Bonn, Beringstr. 6, D–53115 Bonn, Germany
@article{GT_2005_9_4_a12,
     author = {Himpel, Benjamin},
     title = {A splitting formula for the spectral flow of the odd signature operator on 3{\textendash}manifolds coupled to a path of {SU(2)} connections},
     journal = {Geometry & topology},
     pages = {2261--2302},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.2261},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2261/}
}
TY  - JOUR
AU  - Himpel, Benjamin
TI  - A splitting formula for the spectral flow of the odd signature operator on 3–manifolds coupled to a path of SU(2) connections
JO  - Geometry & topology
PY  - 2005
SP  - 2261
EP  - 2302
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2261/
DO  - 10.2140/gt.2005.9.2261
ID  - GT_2005_9_4_a12
ER  - 
%0 Journal Article
%A Himpel, Benjamin
%T A splitting formula for the spectral flow of the odd signature operator on 3–manifolds coupled to a path of SU(2) connections
%J Geometry & topology
%D 2005
%P 2261-2302
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2261/
%R 10.2140/gt.2005.9.2261
%F GT_2005_9_4_a12
Himpel, Benjamin. A splitting formula for the spectral flow of the odd signature operator on 3–manifolds coupled to a path of SU(2) connections. Geometry & topology, Tome 9 (2005) no. 4, pp. 2261-2302. doi : 10.2140/gt.2005.9.2261. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2261/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[2] D Bleecker, B Booss-Bavnbek, Spectral invariants of operators of Dirac type on partitioned manifolds, from: "Aspects of boundary problems in analysis and geometry", Oper. Theory Adv. Appl. 151, Birkhäuser (2004) 1

[3] H U Boden, C M Herald, P A Kirk, E P Klassen, Gauge theoretic invariants of Dehn surgeries on knots, Geom. Topol. 5 (2001) 143

[4] B Booss-Bavnbek, M Lesch, J Phillips, Unbounded Fredholm operators and spectral flow, Canad. J. Math. 57 (2005) 225

[5] B Booß-Bavnbek, K P Wojciechowski, Elliptic boundary problems for Dirac operators, Mathematics: Theory Applications, Birkhäuser (1993)

[6] U Bunke, On the gluing problem for the $\eta$–invariant, J. Differential Geom. 41 (1995) 397

[7] S E Cappell, R Lee, E Y Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994) 121

[8] S E Cappell, R Lee, E Y Miller, Self-adjoint elliptic operators and manifold decompositions. I. Low eigenmodes and stretching, Comm. Pure Appl. Math. 49 (1996) 825

[9] A M Daniel, Maslov index, symplectic reduction in a symplectic Hilbert space and a splitting formula for spectral flow, PhD thesis, Indiana University, Bloomington (1997)

[10] M Daniel, An extension of a theorem of Nicolaescu on spectral flow and the Maslov index, Proc. Amer. Math. Soc. 128 (2000) 611

[11] M Daniel, P Kirk, A general splitting formula for the spectral flow, Michigan Math. J. 46 (1999) 589

[12] J F Davis, P Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics 35, American Mathematical Society (2001)

[13] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)

[14] B Fine, P Kirk, E Klassen, A local analytic splitting of the holonomy map on flat connections, Math. Ann. 299 (1994) 171

[15] B Himpel, A splitting formula for spectral flow on closed 3–manifolds, PhD thesis, Indiana University, Bloomington (2004)

[16] B Himpel, P Kirk, M Lesch, Calderón projector for the Hessian of the perturbed Chern–Simons function on a 3–manifold with boundary, Proc. London Math. Soc. $(3)$ 89 (2004) 241

[17] L C Jeffrey, Chern–Simons–Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Comm. Math. Phys. 147 (1992) 563

[18] T Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer (1995)

[19] P A Kirk, E P Klassen, Chern–Simons invariants of 3–manifolds and representation spaces of knot groups, Math. Ann. 287 (1990) 343

[20] P Kirk, E Klassen, Computing spectral flow via cup products, J. Differential Geom. 40 (1994) 505

[21] P Kirk, E Klassen, Continuity and analyticity of families of self-adjoint Dirac operators on a manifold with boundary, Illinois J. Math. 42 (1998) 123

[22] P Kirk, E Klassen, D Ruberman, Splitting the spectral flow and the Alexander matrix, Comment. Math. Helv. 69 (1994) 375

[23] P Kirk, M Lesch, The $\eta$–invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16 (2004) 553

[24] L I Nicolaescu, The Maslov index, the spectral flow, and decompositions of manifolds, Duke Math. J. 80 (1995) 485

[25] T Ohtsuki, Problems on invariants of knots and 3–manifolds, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry (2002) 377

[26] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351

[27] K P Wojciechowski, The additivity of the $\eta$–invariant: the case of an invertible tangential operator, Houston J. Math. 20 (1994) 603

Cité par Sources :