Heegaard gradient and virtual fibers
Geometry & topology, Tome 9 (2005) no. 4, pp. 2227-2259.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if a closed hyperbolic 3–manifold has infinitely many finite covers of bounded Heegaard genus, then it is virtually fibered. This generalizes a theorem of Lackenby, removing restrictions needed about the regularity of the covers. Furthermore, we can replace the assumption that the covers have bounded Heegaard genus with the weaker hypotheses that the Heegaard splittings for the covers have Heegaard gradient zero, and also bounded width, in the sense of Scharlemann–Thompson thin position for Heegaard splittings.

DOI : 10.2140/gt.2005.9.2227
Keywords: Heegaard splitting, virtual fiber, hyperbolic $3$–manifold

Maher, Joseph 1

1 Mathematics 253-37, California Institute of Technology, Pasadena, California 91125, USA
@article{GT_2005_9_4_a11,
     author = {Maher, Joseph},
     title = {Heegaard gradient and virtual fibers},
     journal = {Geometry & topology},
     pages = {2227--2259},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.2227},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2227/}
}
TY  - JOUR
AU  - Maher, Joseph
TI  - Heegaard gradient and virtual fibers
JO  - Geometry & topology
PY  - 2005
SP  - 2227
EP  - 2259
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2227/
DO  - 10.2140/gt.2005.9.2227
ID  - GT_2005_9_4_a11
ER  - 
%0 Journal Article
%A Maher, Joseph
%T Heegaard gradient and virtual fibers
%J Geometry & topology
%D 2005
%P 2227-2259
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2227/
%R 10.2140/gt.2005.9.2227
%F GT_2005_9_4_a11
Maher, Joseph. Heegaard gradient and virtual fibers. Geometry & topology, Tome 9 (2005) no. 4, pp. 2227-2259. doi : 10.2140/gt.2005.9.2227. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2227/

[1] D Bachman, D Cooper, M E White, Large embedded balls and Heegaard genus in negative curvature, Algebr. Geom. Topol. 4 (2004) 31

[2] R L Bishop, B O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969) 1

[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer (1999)

[4] J Choe, The isoperimetric inequality for minimal surfaces in a Riemannian manifold, J. Reine Angew. Math. 506 (1999) 205

[5] T H Colding, C De Lellis, The min-max construction of minimal surfaces, from: "Surveys in differential geometry, Vol. VIII (Boston, MA, 2002)", Surv. Differ. Geom., VIII, Int. Press, Somerville, MA (2003) 75

[6] M Freedman, J Hass, P Scott, Least area incompressible surfaces in 3–manifolds, Invent. Math. 71 (1983) 609

[7] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[8] A Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991) 189

[9] A Hatcher, Algebraic topology, Cambridge University Press (2002)

[10] J Hempel, 3–Manifolds, Ann. of Math. Studies 86, Princeton University Press (1976)

[11] M Lackenby, Heegaard splittings, the virtually Haken conjecture and property $(\tau)$, Invent. Math. 164 (2006) 317

[12] M Lackenby, The asymptotic behaviour of Heegaard genus, Math. Res. Lett. 11 (2004) 139

[13] A Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics 125, Birkhäuser Verlag (1994)

[14] J Maher, J H Rubinstein, Period three actions on the three-sphere, Geom. Topol. 7 (2003) 329

[15] J T Pitts, J H Rubinstein, Existence of minimal surfaces of bounded topological type in three-manifolds, from: "Miniconference on geometry and partial differential equations (Canberra, 1985)", Proc. Centre Math. Anal. Austral. Nat. Univ. 10, Austral. Nat. Univ. (1986) 163

[16] M Scharlemann, A Thompson, Thin position for 3–manifolds, from: "Geometric topology (Haifa, 1992)", Contemp. Math. 164, Amer. Math. Soc. (1994) 231

[17] M Scharlemann, A Thompson, Heegaard splittings of $(\mathrm{surface}){\times}I$ are standard, Math. Ann. 295 (1993) 549

[18] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56

Cité par Sources :