Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
On every compact, orientable, irreducible 3–manifold which is toroidal or has torus boundary components we construct a contact 1–form whose Reeb vector field does not have any contractible periodic orbits and is tangent to the boundary. Moreover, if is nonempty, then the Reeb vector field is transverse to a taut foliation. By appealing to results of Hofer, Wysocki, and Zehnder, we show that, under certain conditions, the 3–manifold obtained by Dehn filling along is irreducible and different from the 3–sphere.
Résumé
On construit, sur toute variété de dimension trois orientable, compacte, irréductible, bordée par des tores ou toroïdale, une forme de contact dont le champ de Reeb est sans orbite périodique contractible et tangent au bord. De plus, si est non vide, le champ est transversal à un feuilletage tendu. En utilisant des résultats de Hofer, Wysocki et Zehnder, on obtient sous certaines conditions que la variété obtenue par obturation de Dehn le long du bord de est irréductible et différente de la sphère .
Colin, Vincent 1 ; Honda, Ko 2
@article{GT_2005_9_4_a10, author = {Colin, Vincent and Honda, Ko}, title = {Constructions controlees de champs de {Reeb} et applications}, journal = {Geometry & topology}, pages = {2193--2226}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2005}, doi = {10.2140/gt.2005.9.2193}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2193/} }
TY - JOUR AU - Colin, Vincent AU - Honda, Ko TI - Constructions controlees de champs de Reeb et applications JO - Geometry & topology PY - 2005 SP - 2193 EP - 2226 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2193/ DO - 10.2140/gt.2005.9.2193 ID - GT_2005_9_4_a10 ER -
Colin, Vincent; Honda, Ko. Constructions controlees de champs de Reeb et applications. Geometry & topology, Tome 9 (2005) no. 4, pp. 2193-2226. doi : 10.2140/gt.2005.9.2193. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2193/
[1] Homologie de contact des variétés toroïdales, Geom. Topol. 9 (2005) 299
, ,[2] The geometry of $\mathbb{R}$–covered foliations, Geom. Topol. 4 (2000) 457
,[3] Foliations with one-sided branching, Geom. Dedicata 96 (2003) 1
,[4] Promoting essential laminations, Invent. Math. 166 (2006) 583
,[5] Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 659
,[6] Recollement de variétés de contact tendues, Bull. Soc. Math. France 127 (1999) 43
,[7] Sur la torsion des structures de contact tendues, Ann. Sci. École Norm. Sup. $(4)$ 34 (2001) 267
,[8] Chirurgies de Dehn admissibles dans les variétés de contact tendues, Ann. Inst. Fourier (Grenoble) 51 (2001) 1419
,[9] Une infinité de structures de contact tendues sur les variétés toroïdales, Comment. Math. Helv. 76 (2001) 353
,[10] Structures de contact tendues sur les variétés toroïdales et approximation de feuilletages sans composante de Reeb, Topology 41 (2002) 1017
,[11] On the coarse classification of tight contact structures, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 109
, , ,[12] Finitude homotopique et isotopique des structures de contact tendues, in preparation
, , ,[13] Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237
, , , ,[14] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[15] Confoliations, University Lecture Series 13, American Mathematical Society (1998)
, ,[16] Foliations, topology and geometry of 3–manifolds: $\bold R$-covered foliations and transverse pseudo–Anosov flows, Comment. Math. Helv. 77 (2002) 415
,[17] Quasigeodesic flows in hyperbolic 3–manifolds, Topology 40 (2001) 503
, ,[18] Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445
,[19] Foliations and the topology of 3–manifolds II, J. Differential Geom. 26 (1987) 461
,[20] Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479
,[21] Essential laminations in 3–manifolds, Ann. of Math. $(2)$ 130 (1989) 41
, ,[22] Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637
,[23] Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002)", Higher Ed. Press (2002) 405
,[24] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515
,[25] Holomorphic curves in contact dynamics, from: "Differential equations: La Pietra 1996 (Florence)", Proc. Sympos. Pure Math. 65, Amer. Math. Soc. (1999) 77
, ,[26] Unknotted periodic orbits for Reeb flows on the three-sphere, Topol. Methods Nonlinear Anal. 7 (1996) 219
, , ,[27] Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. $(2)$ 157 (2003) 125
, , ,[28] Gluing tight contact structures, Duke Math. J. 115 (2002) 435
,[29] Tight contact structures and taut foliations, Geom. Topol. 4 (2000) 219
, , ,[30] Convex decomposition theory, Int. Math. Res. Not. (2002) 55
, , ,[31] On the Gabai–Eliashberg–Thurston theorem, Comment. Math. Helv. 79 (2004) 502
, , ,[32] Tight contact structures on solid tori, Trans. Amer. Math. Soc. 350 (1998) 1013
,[33] Laminations and flows transverse to finite depth foliations I: branched surfaces and dynamics, preprint
,[34] The topology of foliations, Trudy Moskov. Mat. Obšč. 14 (1965) 248
,[35] The entropy formula for the Ricci flow and its geometric applications
,[36] Ricci flow with surgery on three-manifolds
,[37] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds
,[38] Taut foliations in punctured surface bundles I, Proc. London Math. Soc. $(3)$ 82 (2001) 747
,[39] Taut foliations in punctured surface bundles II, Proc. London Math. Soc. $(3)$ 83 (2001) 443
,[40] Asymptotic cycles, Ann. of Math. $(2)$ 66 (1957) 270
,[41] A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)
,[42] Three-manifolds, foliations and circles I
,[43] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 357
,Cité par Sources :