Constructions controlees de champs de Reeb et applications
Geometry & topology, Tome 9 (2005) no. 4, pp. 2193-2226.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

On every compact, orientable, irreducible 3–manifold V which is toroidal or has torus boundary components we construct a contact 1–form whose Reeb vector field R does not have any contractible periodic orbits and is tangent to the boundary. Moreover, if V is nonempty, then the Reeb vector field R is transverse to a taut foliation. By appealing to results of Hofer, Wysocki, and Zehnder, we show that, under certain conditions, the 3–manifold obtained by Dehn filling along V is irreducible and different from the 3–sphere.

Résumé

On construit, sur toute variété V de dimension trois orientable, compacte, irréductible, bordée par des tores ou toroïdale, une forme de contact dont le champ de Reeb R est sans orbite périodique contractible et tangent au bord. De plus, si V est non vide, le champ R est transversal à un feuilletage tendu. En utilisant des résultats de Hofer, Wysocki et Zehnder, on obtient sous certaines conditions que la variété obtenue par obturation de Dehn le long du bord de V est irréductible et différente de la sphère S3.

DOI : 10.2140/gt.2005.9.2193
Keywords: Reeb vector field, contact structure, taut foliation

Colin, Vincent 1 ; Honda, Ko 2

1 Université de Nantes, UMR 6629 du CNRS, 44322 Nantes, France
2 University of Southern California, Los Angeles, California 90089, USA
@article{GT_2005_9_4_a10,
     author = {Colin, Vincent and Honda, Ko},
     title = {Constructions controlees de champs de {Reeb} et applications},
     journal = {Geometry & topology},
     pages = {2193--2226},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.2193},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2193/}
}
TY  - JOUR
AU  - Colin, Vincent
AU  - Honda, Ko
TI  - Constructions controlees de champs de Reeb et applications
JO  - Geometry & topology
PY  - 2005
SP  - 2193
EP  - 2226
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2193/
DO  - 10.2140/gt.2005.9.2193
ID  - GT_2005_9_4_a10
ER  - 
%0 Journal Article
%A Colin, Vincent
%A Honda, Ko
%T Constructions controlees de champs de Reeb et applications
%J Geometry & topology
%D 2005
%P 2193-2226
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2193/
%R 10.2140/gt.2005.9.2193
%F GT_2005_9_4_a10
Colin, Vincent; Honda, Ko. Constructions controlees de champs de Reeb et applications. Geometry & topology, Tome 9 (2005) no. 4, pp. 2193-2226. doi : 10.2140/gt.2005.9.2193. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2193/

[1] F Bourgeois, V Colin, Homologie de contact des variétés toroïdales, Geom. Topol. 9 (2005) 299

[2] D Calegari, The geometry of $\mathbb{R}$–covered foliations, Geom. Topol. 4 (2000) 457

[3] D Calegari, Foliations with one-sided branching, Geom. Dedicata 96 (2003) 1

[4] D Calegari, Promoting essential laminations, Invent. Math. 166 (2006) 583

[5] V Colin, Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 659

[6] V Colin, Recollement de variétés de contact tendues, Bull. Soc. Math. France 127 (1999) 43

[7] V Colin, Sur la torsion des structures de contact tendues, Ann. Sci. École Norm. Sup. $(4)$ 34 (2001) 267

[8] V Colin, Chirurgies de Dehn admissibles dans les variétés de contact tendues, Ann. Inst. Fourier (Grenoble) 51 (2001) 1419

[9] V Colin, Une infinité de structures de contact tendues sur les variétés toroïdales, Comment. Math. Helv. 76 (2001) 353

[10] V Colin, Structures de contact tendues sur les variétés toroïdales et approximation de feuilletages sans composante de Reeb, Topology 41 (2002) 1017

[11] V Colin, E Giroux, K Honda, On the coarse classification of tight contact structures, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 109

[12] V Colin, E Giroux, K Honda, Finitude homotopique et isotopique des structures de contact tendues, in preparation

[13] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237

[14] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[15] Y M Eliashberg, W P Thurston, Confoliations, University Lecture Series 13, American Mathematical Society (1998)

[16] S R Fenley, Foliations, topology and geometry of 3–manifolds: $\bold R$-covered foliations and transverse pseudo–Anosov flows, Comment. Math. Helv. 77 (2002) 415

[17] S Fenley, L Mosher, Quasigeodesic flows in hyperbolic 3–manifolds, Topology 40 (2001) 503

[18] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[19] D Gabai, Foliations and the topology of 3–manifolds II, J. Differential Geom. 26 (1987) 461

[20] D Gabai, Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479

[21] D Gabai, U Oertel, Essential laminations in 3–manifolds, Ann. of Math. $(2)$ 130 (1989) 41

[22] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637

[23] E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002)", Higher Ed. Press (2002) 405

[24] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515

[25] H Hofer, M Kriener, Holomorphic curves in contact dynamics, from: "Differential equations: La Pietra 1996 (Florence)", Proc. Sympos. Pure Math. 65, Amer. Math. Soc. (1999) 77

[26] H Hofer, K Wysocki, E Zehnder, Unknotted periodic orbits for Reeb flows on the three-sphere, Topol. Methods Nonlinear Anal. 7 (1996) 219

[27] H Hofer, K Wysocki, E Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. $(2)$ 157 (2003) 125

[28] K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435

[29] K Honda, W H Kazez, G Matić, Tight contact structures and taut foliations, Geom. Topol. 4 (2000) 219

[30] K Honda, W H Kazez, G Matić, Convex decomposition theory, Int. Math. Res. Not. (2002) 55

[31] K Honda, W H Kazez, G Matić, On the Gabai–Eliashberg–Thurston theorem, Comment. Math. Helv. 79 (2004) 502

[32] S Makar-Limanov, Tight contact structures on solid tori, Trans. Amer. Math. Soc. 350 (1998) 1013

[33] L Mosher, Laminations and flows transverse to finite depth foliations I: branched surfaces and dynamics, preprint

[34] S P Novikov, The topology of foliations, Trudy Moskov. Mat. Obšč. 14 (1965) 248

[35] G Perelman, The entropy formula for the Ricci flow and its geometric applications

[36] G Perelman, Ricci flow with surgery on three-manifolds

[37] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds

[38] R Roberts, Taut foliations in punctured surface bundles I, Proc. London Math. Soc. $(3)$ 82 (2001) 747

[39] R Roberts, Taut foliations in punctured surface bundles II, Proc. London Math. Soc. $(3)$ 83 (2001) 443

[40] S Schwartzman, Asymptotic cycles, Ann. of Math. $(2)$ 66 (1957) 270

[41] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)

[42] W Thurston, Three-manifolds, foliations and circles I

[43] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 357

Cité par Sources :