Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Suppose is a Gromov hyperbolic group, and is quasisymmetrically homeomorphic to an Ahlfors –regular metric 2–sphere with Ahlfors regular conformal dimension . Then acts discretely, cocompactly, and isometrically on .
Bonk, Mario 1 ; Kleiner, Bruce 1
@article{GT_2005_9_1_a6, author = {Bonk, Mario and Kleiner, Bruce}, title = {Conformal dimension and {Gromov} hyperbolic groups with 2{\textendash}sphere boundary}, journal = {Geometry & topology}, pages = {219--246}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2005}, doi = {10.2140/gt.2005.9.219}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.219/} }
TY - JOUR AU - Bonk, Mario AU - Kleiner, Bruce TI - Conformal dimension and Gromov hyperbolic groups with 2–sphere boundary JO - Geometry & topology PY - 2005 SP - 219 EP - 246 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.219/ DO - 10.2140/gt.2005.9.219 ID - GT_2005_9_1_a6 ER -
Bonk, Mario; Kleiner, Bruce. Conformal dimension and Gromov hyperbolic groups with 2–sphere boundary. Geometry & topology, Tome 9 (2005) no. 1, pp. 219-246. doi : 10.2140/gt.2005.9.219. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.219/
[1] Conformal dimension of the antenna set, Proc. Amer. Math. Soc. 129 (2001) 3631
, ,[2] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002) 127
, ,[3] Rigidity for quasi–Möbius group actions, J. Differential Geom. 61 (2002) 81
, ,[4] Conformal metrics on the unit ball in Euclidean space, Proc. London Math. Soc. $(3)$ 77 (1998) 635
, , ,[5] Rigidity of quasi-isometries for some hyperbolic buildings, Comment. Math. Helv. 75 (2000) 701
, ,[6] Cohomologie $l_p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003) 85
, ,[7] Volume entropy of hyperbolic graph surfaces, Ergodic Theory Dynam. Systems 25 (2005) 403
,[8] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428
,[9] Mesures de Patterson–Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241
,[10] Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000)
, ,[11] Lectures on analysis on metric spaces, Universitext, Springer (2001)
,[12] Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998) 1
, ,[13] Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004) 1278
, ,[14] Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001) 401
, ,[15] Ahlfors $Q$–regular spaces with arbitrary $Q>1$ admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000) 111
,[16] Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. $(2)$ 54 (1996) 50
,[17] Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math. $($N.S.$)$ 2 (1996) 155
,[18] Some novel types of fractal geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (2001)
,[19] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979) 171
,[20] On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 465
,[21] On quasiconformal groups, J. Analyse Math. 46 (1986) 318
,[22] Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998) 525
,[23] Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn. 5 (2001) 21
,Cité par Sources :