Homology and derived series of groups
Geometry & topology, Tome 9 (2005) no. 4, pp. 2159-2191.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In 1964, John Stallings established an important relationship between the low-dimensional homology of a group and its lower central series. We establish a similar relationship between the low-dimensional homology of a group and its derived series. We also define a torsion-free-solvable completion of a group that is analogous to the Malcev completion, with the role of the lower central series replaced by the derived series. We prove that the torsion-free-solvable completion is invariant under rational homology equivalence.

DOI : 10.2140/gt.2005.9.2159
Keywords: derived series, group homology, Malcev completion, homological localization

Cochran, Tim D 1 ; Harvey, Shelly L 1

1 Department of Mathematics, Rice University, Houston, Texas 77005-1892, USA
@article{GT_2005_9_4_a9,
     author = {Cochran, Tim D and Harvey, Shelly L},
     title = {Homology and derived series of groups},
     journal = {Geometry & topology},
     pages = {2159--2191},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.2159},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2159/}
}
TY  - JOUR
AU  - Cochran, Tim D
AU  - Harvey, Shelly L
TI  - Homology and derived series of groups
JO  - Geometry & topology
PY  - 2005
SP  - 2159
EP  - 2191
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2159/
DO  - 10.2140/gt.2005.9.2159
ID  - GT_2005_9_4_a9
ER  - 
%0 Journal Article
%A Cochran, Tim D
%A Harvey, Shelly L
%T Homology and derived series of groups
%J Geometry & topology
%D 2005
%P 2159-2191
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2159/
%R 10.2140/gt.2005.9.2159
%F GT_2005_9_4_a9
Cochran, Tim D; Harvey, Shelly L. Homology and derived series of groups. Geometry & topology, Tome 9 (2005) no. 4, pp. 2159-2191. doi : 10.2140/gt.2005.9.2159. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2159/

[1] A K Bousfield, Homological localization towers for groups and $\Pi $-modules, Mem. Amer. Math. Soc. 10 (1977)

[2] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)

[3] A J Casson, Link cobordism and Milnor's invariant, Bull. London Math. Soc. 7 (1975) 39

[4] J C Cha, Injectivity theorems and algebraic closures of groups with coefficients, Proc. Lond. Math. Soc. $(3)$ 96 (2008) 227

[5] T D Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004) 347

[6] T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and $L^2$–signatures, Ann. of Math. $(2)$ 157 (2003) 433

[7] T D Cochran, K E Orr, P Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004) 105

[8] T D Cochran, P Teichner, Knot concordance and von Neumann $\rho$–invariants, Duke Math. J. 137 (2007) 337

[9] P M Cohn, Free rings and their relations, London Mathematical Society Monographs 19, Academic Press [Harcourt Brace Jovanovich Publishers] (1985)

[10] R M Hain, Completions of mapping class groups and the cycle $C-C^ -$, from: "Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991)", Contemp. Math. 150, Amer. Math. Soc. (1993) 75

[11] S L Harvey, Homology cobordism invariants and the Cochran–Orr–Teichner filtration of the link concordance group, Geom. Topol. 12 (2008) 387

[12] S L Harvey, Higher-order polynomial invariants of 3–manifolds giving lower bounds for the Thurston norm, Topology 44 (2005) 895

[13] P J Hilton, U Stammbach, A course in homological algebra, Graduate Texts in Mathematics 4, Springer (1997)

[14] J Howie, H R Schneebeli, Homological and topological properties of locally indicable groups, Manuscripta Math. 44 (1983) 71

[15] T Kim, Filtration of the classical knot concordance group and Casson–Gordon invariants, Math. Proc. Cambridge Philos. Soc. 137 (2004) 293

[16] T Kim, An infinite family of non-concordant knots having the same Seifert form, Comment. Math. Helv. 80 (2005) 147

[17] J Y Le Dimet, Cobordisme d'enlacements de disques, Mém. Soc. Math. France $($N.S.$)$ (1988)

[18] J P Levine, Link concordance and algebraic closure II, Invent. Math. 96 (1989) 571

[19] J Lewin, A note on zero divisors in group-rings, Proc. Amer. Math. Soc. 31 (1972) 357

[20] C Miller, Exponential iterated integrals and the relative solvable completion of the fundamental group of a manifold, Topology 44 (2005) 351

[21] S Papadima, A I Suciu, Chen Lie algebras, Int. Math. Res. Not. (2004) 1057

[22] D S Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley Sons] (1977)

[23] D Quillen, Rational homotopy theory, Ann. of Math. $(2)$ 90 (1969) 205

[24] S K Roushon, Topology of 3–manifolds and a class of groups II, Bol. Soc. Mat. Mexicana $(3)$ 10 (2004) 467

[25] J Stallings, Homology and central series of groups, J. Algebra 2 (1965) 170

[26] B Stenström, Rings of quotients, Springer (1975)

[27] R Strebel, Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974) 302

[28] P Teichner, Knots, von Neumann signatures, and grope cobordism, from: "Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002)", Higher Ed. Press (2002) 437

[29] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)

Cité par Sources :