New topologically slice knots
Geometry & topology, Tome 9 (2005) no. 4, pp. 2129-2158.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In the early 1980’s Mike Freedman showed that all knots with trivial Alexander polynomial are topologically slice (with fundamental group ). This paper contains the first new examples of topologically slice knots. In fact, we give a sufficient homological condition under which a knot is slice with fundamental group [12]. These two fundamental groups are known to be the only solvable ribbon groups. Our homological condition implies that the Alexander polynomial equals (t 2)(t1 2) but also contains information about the metabelian cover of the knot complement (since there are many non-slice knots with this Alexander polynomial).

DOI : 10.2140/gt.2005.9.2129
Keywords: slice knots, surgery, Blanchfield pairing

Friedl, Stefan 1 ; Teichner, Peter 2

1 Department of Mathematics, Rice University, Houston, Texas 77005, USA
2 Department of Mathematics, University of California, Berkeley, California 94720, USA
@article{GT_2005_9_4_a8,
     author = {Friedl, Stefan and Teichner, Peter},
     title = {New topologically slice knots},
     journal = {Geometry & topology},
     pages = {2129--2158},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.2129},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2129/}
}
TY  - JOUR
AU  - Friedl, Stefan
AU  - Teichner, Peter
TI  - New topologically slice knots
JO  - Geometry & topology
PY  - 2005
SP  - 2129
EP  - 2158
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2129/
DO  - 10.2140/gt.2005.9.2129
ID  - GT_2005_9_4_a8
ER  - 
%0 Journal Article
%A Friedl, Stefan
%A Teichner, Peter
%T New topologically slice knots
%J Geometry & topology
%D 2005
%P 2129-2158
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2129/
%R 10.2140/gt.2005.9.2129
%F GT_2005_9_4_a8
Friedl, Stefan; Teichner, Peter. New topologically slice knots. Geometry & topology, Tome 9 (2005) no. 4, pp. 2129-2158. doi : 10.2140/gt.2005.9.2129. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2129/

[1] C S Aravinda, F T Farrell, S K Roushon, Surgery groups of knot and link complements, Bull. London Math. Soc. 29 (1997) 400

[2] A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue", Progr. Math. 62, Birkhäuser (1986) 181

[3] T D Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004) 347

[4] T D Cochran, K E Orr, P Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004) 105

[5] T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and $L^2$–signatures, Ann. of Math. $(2)$ 157 (2003) 433

[6] T D Cochran, P Teichner, Knot concordance and von Neumann $\rho$–invariants, Duke Math. J. 137 (2007) 337

[7] T D Cochran, T Kim, Higher-order Alexander invariants and filtrations of the knot concordance group, Trans. Amer. Math. Soc. 360 (2008) 1407

[8] J Duval, Forme de Blanchfield et cobordisme d'entrelacs bords, Comment. Math. Helv. 61 (1986) 617

[9] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[10] M H Freedman, F Quinn, Topology of 4–manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)

[11] M H Freedman, P Teichner, 4–manifold topology I: Subexponential groups, Invent. Math. 122 (1995) 509

[12] S Friedl, Eta invariants as sliceness obstructions and their relation to Casson–Gordon invariants, Algebr. Geom. Topol. 4 (2004) 893

[13] S Garoufalidis, P Teichner, On knots with trivial Alexander polynomial, J. Differential Geom. 67 (2004) 167

[14] R E Gompf, Smooth concordance of topologically slice knots, Topology 25 (1986) 353

[15] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)

[16] J Howie, On locally indicable groups, Math. Z. 180 (1982) 445

[17] J Howie, On the asphericity of ribbon disc complements, Trans. Amer. Math. Soc. 289 (1985) 281

[18] T Kim, An infinite family of non-concordant knots having the same Seifert form, Comment. Math. Helv. 80 (2005) 147

[19] J Levine, A method for generating link polynomials, Amer. J. Math. 89 (1967) 69

[20] J Levine, Knot modules I, Trans. Amer. Math. Soc. 229 (1977) 1

[21] C Livingston, Seifert forms and concordance, Geom. Topol. 6 (2002) 403

[22] C Livingston, Computations of the Ozsváth–Szabó knot concordance invariant, Geom. Topol. 8 (2004) 735

[23] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615

[24] A A Ranicki, Algebraic $L$–theory III: Twisted Laurent extensions, from: "Algebraic K-theory, III: Hermitian K-theory and geometric application (Proc. Conf. Seattle Res. Center, Battelle Memorial Inst., 1972)", Springer (1973)

[25] A A Ranicki, Algebraic $L$–theory and topological manifolds, Cambridge Tracts in Mathematics 102, Cambridge University Press (1992)

[26] A Ranicki, High-dimensional knot theory, Springer Monographs in Mathematics, Springer (1998)

[27] A Ranicki, Algebraic and geometric surgery, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (2002)

[28] J A Rasmussen, Khovanov homology and the slice genus

[29] S K Roushon, Topology of 3–manifolds and a class of groups II, Bol. Soc. Mat. Mexicana $(3)$ 10 (2004) 467

[30] R Strebel, Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974) 302

[31] C T C Wall, Surgery on compact manifolds, Mathematical Surveys and Monographs 69, American Mathematical Society (1999)

[32] J S Wilson, Soluble groups of deficiency 1, Bull. London Math. Soc. 28 (1996) 476

Cité par Sources :