Rohlin’s invariant and gauge theory III. Homology 4–tori
Geometry & topology, Tome 9 (2005) no. 4, pp. 2079-2127.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the third in our series of papers relating gauge theoretic invariants of certain 4–manifolds with invariants of 3–manifolds derived from Rohlin’s theorem. Such relations are well-known in dimension three, starting with Casson’s integral lift of the Rohlin invariant of a homology sphere. We consider two invariants of a spin 4–manifold that has the integral homology of a 4–torus. The first is a degree zero Donaldson invariant, counting flat connections on a certain SO(3)–bundle. The second, which depends on the choice of a 1–dimensional cohomology class, is a combination of Rohlin invariants of a 3–manifold carrying the dual homology class. We prove that these invariants, suitably normalized, agree modulo 2, by showing that they coincide with the quadruple cup product of 1–dimensional cohomology classes.

DOI : 10.2140/gt.2005.9.2079
Keywords: Rohlin invariant, Donaldson invariant, equivariant perturbation, homology torus

Ruberman, Daniel 1 ; Saveliev, Nikolai 2

1 Department of Mathematics, MS 050, Brandeis University, Waltham, MA 02454, USA
2 Department of Mathematics, University of Miami, PO Box 249085, Coral Gables, Florida 33124, USA
@article{GT_2005_9_4_a7,
     author = {Ruberman, Daniel and Saveliev, Nikolai},
     title = {Rohlin{\textquoteright}s invariant and gauge theory {III.} {Homology} 4{\textendash}tori},
     journal = {Geometry & topology},
     pages = {2079--2127},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.2079},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2079/}
}
TY  - JOUR
AU  - Ruberman, Daniel
AU  - Saveliev, Nikolai
TI  - Rohlin’s invariant and gauge theory III. Homology 4–tori
JO  - Geometry & topology
PY  - 2005
SP  - 2079
EP  - 2127
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2079/
DO  - 10.2140/gt.2005.9.2079
ID  - GT_2005_9_4_a7
ER  - 
%0 Journal Article
%A Ruberman, Daniel
%A Saveliev, Nikolai
%T Rohlin’s invariant and gauge theory III. Homology 4–tori
%J Geometry & topology
%D 2005
%P 2079-2127
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2079/
%R 10.2140/gt.2005.9.2079
%F GT_2005_9_4_a7
Ruberman, Daniel; Saveliev, Nikolai. Rohlin’s invariant and gauge theory III. Homology 4–tori. Geometry & topology, Tome 9 (2005) no. 4, pp. 2079-2127. doi : 10.2140/gt.2005.9.2079. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2079/

[1] P J Braam, S K Donaldson, Floer's work on instanton homology, knots and surgery, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 195

[2] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)

[3] S E Cappell, R Lee, E Y Miller, Self-adjoint elliptic operators and manifold decompositions III: Determinant line bundles and Lagrangian intersection, Comm. Pure Appl. Math. 52 (1999) 543

[4] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279

[5] S K Donaldson, The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397

[6] S K Donaldson, Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)

[7] A Floer, An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215

[8] M Furuta, Perturbation of moduli spaces of self-dual connections, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 275

[9] M Furuta, H Ohta, Differentiable structures on punctured 4–manifolds, Topology Appl. 51 (1993) 291

[10] R E Gompf, T S Mrowka, Irreducible 4–manifolds need not be complex, Ann. of Math. $(2)$ 138 (1993) 61

[11] C M Herald, Legendrian cobordism and Chern–Simons theory on 3–manifolds with boundary, Comm. Anal. Geom. 2 (1994) 337

[12] J Milnor, D Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete 73, Springer (1973)

[13] S J Kaplan, Constructing framed 4–manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254 (1979) 237

[14] P B Kronheimer, Four-manifold invariants from higher-rank bundles, J. Differential Geom. 70 (2005) 59

[15] P B Kronheimer, Instanton invariants and flat connections on the Kummer surface, Duke Math. J. 64 (1991) 229

[16] E Laitinen, End homology and duality, Forum Math. 8 (1996) 121

[17] C Lescop, Global surgery formula for the Casson–Walker invariant, Annals of Mathematics Studies 140, Princeton University Press (1996)

[18] K Masataka, Casson's knot invariant and gauge theory, Topology Appl. 112 (2001) 111

[19] J W Milnor, Infinite cyclic coverings, from: "Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967)", Prindle, Weber Schmidt, Boston (1968) 115

[20] L Pontrjagin, Mappings of the three-dimensional sphere into an $n$–dimensional complex, C. R. $($Doklady$)$ Acad. Sci. URSS $($N. S.$)$ 34 (1942) 35

[21] D Ruberman, Doubly slice knots and the Casson–Gordon invariants, Trans. Amer. Math. Soc. 279 (1983) 569

[22] D Ruberman, N Saveliev, Rohlin's invariant and gauge theory I: Homology 3–tori, Comment. Math. Helv. 79 (2004) 618

[23] D Ruberman, N Saveliev, Rohlin's invariant and gauge theory II: Mapping tori, Geom. Topol. 8 (2004) 35

[24] D Ruberman, N Saveliev, Casson-type invariants in dimension four, from: "Geometry and topology of manifolds", Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 281

[25] D Ruberman, S Strle, Mod 2 Seiberg–Witten invariants of homology tori, Math. Res. Lett. 7 (2000) 789

[26] C H Taubes, Gauge theory on asymptotically periodic 4–manifolds, J. Differential Geom. 25 (1987) 363

[27] C H Taubes, Casson's invariant and gauge theory, J. Differential Geom. 31 (1990) 547

[28] V G Turaev, Cohomology rings, linking coefficient forms and invariants of spin structures in three-dimensional manifolds, Mat. Sb. $($N.S.$)$ 120(162) (1983) 68, 143

[29] K K Uhlenbeck, Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982) 31

[30] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769

Cité par Sources :