A stable classification of Lefschetz fibrations
Geometry & topology, Tome 9 (2005) no. 1, pp. 203-217.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the classification of Lefschetz fibrations up to stabilization by fiber sum operations. We show that for each genus there is a “universal” fibration fg0 with the property that, if two Lefschetz fibrations over S2 have the same Euler–Poincaré characteristic and signature, the same numbers of reducible singular fibers of each type, and admit sections with the same self-intersection, then after repeatedly fiber summing with fg0 they become isomorphic. As a consequence, any two compact integral symplectic 4–manifolds with the same values of (c12,c2,c1 [ω],[ω]2) become symplectomorphic after blowups and symplectic sums with fg0.

DOI : 10.2140/gt.2005.9.203
Keywords: symplectic 4–manifolds, Lefschetz fibrations, fiber sums, mapping class group factorizations

Auroux, Denis 1

1 Department of Mathematics, MIT, Cambridge, Massachusetts 02139, USA
@article{GT_2005_9_1_a5,
     author = {Auroux, Denis},
     title = {A stable classification of {Lefschetz} fibrations},
     journal = {Geometry & topology},
     pages = {203--217},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     doi = {10.2140/gt.2005.9.203},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.203/}
}
TY  - JOUR
AU  - Auroux, Denis
TI  - A stable classification of Lefschetz fibrations
JO  - Geometry & topology
PY  - 2005
SP  - 203
EP  - 217
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.203/
DO  - 10.2140/gt.2005.9.203
ID  - GT_2005_9_1_a5
ER  - 
%0 Journal Article
%A Auroux, Denis
%T A stable classification of Lefschetz fibrations
%J Geometry & topology
%D 2005
%P 203-217
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.203/
%R 10.2140/gt.2005.9.203
%F GT_2005_9_1_a5
Auroux, Denis. A stable classification of Lefschetz fibrations. Geometry & topology, Tome 9 (2005) no. 1, pp. 203-217. doi : 10.2140/gt.2005.9.203. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.203/

[1] D Auroux, Fiber sums of genus 2 Lefschetz fibrations, Turkish J. Math. 27 (2003) 1

[2] S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205

[3] H Endo, Meyer's signature cocycle and hyperelliptic fibrations, Math. Ann. 316 (2000) 237

[4] A Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980) 89

[5] V S Kulikov, V M Kharlamov, On braid monodromy factorizations, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003) 79

[6] M Matsumoto, A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000) 401

[7] B Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes in Mathematics 603, Springer (1977)

[8] B Ozbagci, Signatures of Lefschetz fibrations, Pacific J. Math. 202 (2002) 99

[9] B Siebert, G Tian, On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. $(2)$ 161 (2005) 959

[10] B Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983) 157

Cité par Sources :