Contact homology and one parameter families of Legendrian knots
Geometry & topology, Tome 9 (2005) no. 4, pp. 2013-2078.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider S1–families of Legendrian knots in the standard contact R3. We define the monodromy of such a loop, which is an automorphism of the Chekanov–Eliashberg contact homology of the starting (and ending) point. We prove this monodromy is a homotopy invariant of the loop. We also establish techniques to address the issue of Reidemeister moves of Lagrangian projections of Legendrian links. As an application, we exhibit a loop of right-handed Legendrian torus knots which is non-contractible in the space Leg(S1, 3) of Legendrian knots, although it is contractible in the space Emb(S1, 3) of smooth knots. For this result, we also compute the contact homology of what we call the Legendrian closure of a positive braid and construct an augmentation for each such link diagram.

DOI : 10.2140/gt.2005.9.2013
Keywords: Legendrian contact homology, monodromy, Reidemeister moves, braid positive knots, torus knots

Kalman, Tamas 1

1 Department of Mathematics, University of Southern California, Los Angeles, California 90089, USA
@article{GT_2005_9_4_a6,
     author = {Kalman, Tamas},
     title = {Contact homology and one parameter families of {Legendrian} knots},
     journal = {Geometry & topology},
     pages = {2013--2078},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.2013},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2013/}
}
TY  - JOUR
AU  - Kalman, Tamas
TI  - Contact homology and one parameter families of Legendrian knots
JO  - Geometry & topology
PY  - 2005
SP  - 2013
EP  - 2078
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2013/
DO  - 10.2140/gt.2005.9.2013
ID  - GT_2005_9_4_a6
ER  - 
%0 Journal Article
%A Kalman, Tamas
%T Contact homology and one parameter families of Legendrian knots
%J Geometry & topology
%D 2005
%P 2013-2078
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2013/
%R 10.2140/gt.2005.9.2013
%F GT_2005_9_4_a6
Kalman, Tamas. Contact homology and one parameter families of Legendrian knots. Geometry & topology, Tome 9 (2005) no. 4, pp. 2013-2078. doi : 10.2140/gt.2005.9.2013. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.2013/

[1] V I Arnol’D, Invariants and perestroikas of fronts on a plane, Trudy Mat. Inst. Steklov. 209 (1995) 14

[2] C Benham, X S Lin, D Miller, Subspaces of knot spaces, Proc. Amer. Math. Soc. 129 (2001) 3121

[3] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87

[4] F Bourgeois, Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett. 13 (2006) 71

[5] Y Chekanov, New invariants of Legendrian knots, from: "European Congress of Mathematics, Vol II (Barcelona, 2000)", Progr. Math. 202, Birkhäuser (2001) 525

[6] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[7] T Ekholm, J Etnyre, M Sullivan, Legendrian submanifolds in $\mathbb{R}^{2n+1}$ and contact homology

[8] Y Eliashberg, M Fraser, Classification of topologically trivial Legendrian knots, from: "Geometry, topology, and dynamics (Montreal, PQ, 1995)", CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 17

[9] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[10] J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory", Elsevier B. V., Amsterdam (2005) 105

[11] J B Etnyre, K Honda, Knots and contact geometry I: Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63

[12] J B Etnyre, K Honda, On connected sums and Legendrian knots, Adv. Math. 179 (2003) 59

[13] J B Etnyre, K Honda, Cabling and transverse simplicity, Ann. of Math. $(2)$ 162 (2005) 1305

[14] J B Etnyre, L L Ng, J M Sabloff, Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom. 1 (2002) 321

[15] Y Félix, S Halperin, J C Thomas, Differential graded algebras in topology, from: "Handbook of algebraic topology", North-Holland (1995) 829

[16] A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575

[17] G K Francis, Extensions to the disk of properly nested plane immersions of the circle, Michigan Math. J. 17 (1970) 377

[18] D Fuchs, Chekanov–Eliashberg invariant of Legendrian knots: existence of augmentations, J. Geom. Phys. 47 (2003) 43

[19] D Fuchs, T Ishkhanov, Invariants of Legendrian knots and decompositions of front diagrams, Mosc. Math. J. 4 (2004) 707, 783

[20] A Hatcher, Spaces of knots

[21] M Hutchings, Floer homology of families I, Algebr. Geom. Topol. 8 (2008) 435

[22] M Hutchings, Floer homology of families II: symplectomorphisms, in preparation

[23] L L Ng, Computable Legendrian invariants, Topology 42 (2003) 55

[24] V Poénaru, Extension des immersions en codimension 1 (d'après Samuel Blank), from: "Séminaire Bourbaki, Vol. 10", Soc. Math. France (1995) 473

[25] J M Sabloff, Augmentations and rulings of Legendrian knots, Int. Math. Res. Not. (2005) 1157

[26] P Seidel, $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046

Cité par Sources :