Yau–Zaslow formula on K3 surfaces for non-primitive classes
Geometry & topology, Tome 9 (2005) no. 4, pp. 1977-2012.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We compute the genus zero family Gromov–Witten invariants for K3 surfaces using the topological recursion formula and the symplectic sum formula for a degeneration of elliptic K3 surfaces. In particular we verify the Yau–Zaslow formula for non-primitive classes of index two.

DOI : 10.2140/gt.2005.9.1977
Keywords: family Gromov–Witten invariants, Yau–Zaslow formula, symplectic sum formula, topological recursion relation, K3 surface

Lee, Junho 1 ; Leung, Naichung Conan 2

1 Department of Mathematical Sciences, Seoul National University San56-1, Shinrim-dong Kwanak-gu, Seoul 151-747, Korea
2 Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
@article{GT_2005_9_4_a5,
     author = {Lee, Junho and Leung, Naichung Conan},
     title = {Yau{\textendash}Zaslow formula on {K3} surfaces for non-primitive classes},
     journal = {Geometry & topology},
     pages = {1977--2012},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.1977},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1977/}
}
TY  - JOUR
AU  - Lee, Junho
AU  - Leung, Naichung Conan
TI  - Yau–Zaslow formula on K3 surfaces for non-primitive classes
JO  - Geometry & topology
PY  - 2005
SP  - 1977
EP  - 2012
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1977/
DO  - 10.2140/gt.2005.9.1977
ID  - GT_2005_9_4_a5
ER  - 
%0 Journal Article
%A Lee, Junho
%A Leung, Naichung Conan
%T Yau–Zaslow formula on K3 surfaces for non-primitive classes
%J Geometry & topology
%D 2005
%P 1977-2012
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1977/
%R 10.2140/gt.2005.9.1977
%F GT_2005_9_4_a5
Lee, Junho; Leung, Naichung Conan. Yau–Zaslow formula on K3 surfaces for non-primitive classes. Geometry & topology, Tome 9 (2005) no. 4, pp. 1977-2012. doi : 10.2140/gt.2005.9.1977. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1977/

[1] A Beauville, Counting rational curves on $K3$ surfaces, Duke Math. J. 97 (1999) 99

[2] J Bryan, N C Leung, The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371

[3] J Bryan, N C Leung, Counting curves on irrational surfaces, from: "Surveys in differential geometry: differential geometry inspired by string theory", Surv. Differ. Geom. 5, Int. Press, Boston (1999) 313

[4] X Chen, Rational curves on $K3$ surfaces, J. Algebraic Geom. 8 (1999) 245

[5] A Gathmann, The number of plane conics that are five-fold tangent to a given curve, Compos. Math. 141 (2005) 487

[6] E Getzler, Topological recursion relations in genus 2, from: "Integrable systems and algebraic geometry (Kobe/Kyoto, 1997)", World Sci. Publ., River Edge, NJ (1998) 73

[7] E N Ionel, T H Parker, Relative Gromov–Witten invariants, Ann. of Math. $(2)$ 157 (2003) 45

[8] E N Ionel, T H Parker, The symplectic sum formula for Gromov–Witten invariants, Ann. of Math. $(2)$ 159 (2004) 935

[9] S Ivashkovich, V Shevchishin, Gromov compactness theorem for $J$–complex curves with boundary, Internat. Math. Res. Notices (2000) 1167

[10] A W Knapp, Elliptic curves, Mathematical Notes 40, Princeton University Press (1992)

[11] M Kontsevich, Y Manin, Relations between the correlators of the topological sigma-model coupled to gravity, Comm. Math. Phys. 196 (1998) 385

[12] M Kaneko, D Zagier, A generalized Jacobi theta function and quasimodular forms, from: "The moduli space of curves (Texel Island, 1994)", Progr. Math. 129, Birkhäuser (1995) 165

[13] J Lee, Family Gromov–Witten invariants for Kähler surfaces, Duke Math. J. 123 (2004) 209

[14] J Lee, Counting curves in elliptic surfaces by symplectic methods, Comm. Anal. Geom. 14 (2006) 107

[15] J Lee, N C Leung, Counting elliptic curves in K3 surfaces, J. Algebraic Geom. 15 (2006) 591

[16] J Li, A note on enumerating rational curves in a $K3$ surface, from: "Geometry and nonlinear partial differential equations (Hangzhou, 2001)", AMS/IP Stud. Adv. Math. 29, Amer. Math. Soc. (2002) 53

[17] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic 4–manifolds (Irvine, CA, 1996)", First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA (1998) 47

[18] T J Li, A K Liu, Counting curves on elliptic ruled surface, from: "Proceedings of the 1999 Georgia Topology Conference (Athens, GA)" (2002) 347

[19] A K Liu, Family blowup formula, admissible graphs and the enumeration of singular curves I, J. Differential Geom. 56 (2000) 381

[20] T H Parker, Compactified moduli spaces of pseudo-holomorphic curves, from: "Mirror symmetry, III (Montreal, PQ, 1995)", AMS/IP Stud. Adv. Math. 10, Amer. Math. Soc. (1999) 77

[21] T H Parker, J G Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993) 63

[22] Y Ruan, G Tian, Higher genus symplectic invariants and sigma models coupled with gravity, Invent. Math. 130 (1997) 455

[23] S T Yau, E Zaslow, BPS states, string duality, and nodal curves on $K3$, Nuclear Phys. B 471 (1996) 503

Cité par Sources :