On finite subgroups of groups of type VF
Geometry & topology, Tome 9 (2005) no. 4, pp. 1953-1976.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For any finite group Q not of prime power order, we construct a group G that is virtually of type F, contains infinitely many conjugacy classes of subgroups isomorphic to Q, and contains only finitely many conjugacy classes of other finite subgroups.

DOI : 10.2140/gt.2005.9.1953
Keywords: conjugacy classes, finite subgroups, groups of type $F$

Leary, Ian J 1

1 Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210-1174, USA, School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
@article{GT_2005_9_4_a4,
     author = {Leary, Ian J},
     title = {On finite subgroups of groups of type {VF}},
     journal = {Geometry & topology},
     pages = {1953--1976},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.1953},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1953/}
}
TY  - JOUR
AU  - Leary, Ian J
TI  - On finite subgroups of groups of type VF
JO  - Geometry & topology
PY  - 2005
SP  - 1953
EP  - 1976
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1953/
DO  - 10.2140/gt.2005.9.1953
ID  - GT_2005_9_4_a4
ER  - 
%0 Journal Article
%A Leary, Ian J
%T On finite subgroups of groups of type VF
%J Geometry & topology
%D 2005
%P 1953-1976
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1953/
%R 10.2140/gt.2005.9.1953
%F GT_2005_9_4_a4
Leary, Ian J. On finite subgroups of groups of type VF. Geometry & topology, Tome 9 (2005) no. 4, pp. 1953-1976. doi : 10.2140/gt.2005.9.1953. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1953/

[1] H Bass, Traces and Euler characteristics, from: "Homological group theory (Proc. Sympos., Durham, 1977)", London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 1

[2] M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445

[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)

[4] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)

[5] P E Conner, E E Floyd, On the construction of periodic maps without fixed points, Proc. Amer. Math. Soc. 10 (1959) 354

[6] I J Leary, The Euler class of a Poincaré duality group, Proc. Edinb. Math. Soc. $(2)$ 45 (2002) 421

[7] I J Leary, B E A Nucinkis, Some groups of type $VF$, Invent. Math. 151 (2003) 135

[8] W Lück, The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149 (2000) 177

[9] R Oliver, Fixed-point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975) 155

[10] J Rosenberg, Algebraic $K$–theory and its applications, Graduate Texts in Mathematics 147, Springer (1994)

[11] , List of problems, from: "Homological group theory (Proc. Sympos., Durham, 1977)", London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 369

Cité par Sources :