Representations of polygons of finite groups
Geometry & topology, Tome 9 (2005) no. 4, pp. 1915-1951.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct discrete and faithful representations into the isometry group of a hyperbolic space of the fundamental groups of acute negatively curved even-sided polygons of finite groups.

DOI : 10.2140/gt.2005.9.1915
Keywords: hyperbolic groups, polygons of groups

Kapovich, Michael 1

1 Department of Mathematics, University of California, 1 Shields Ave, Davis, California 95616, USA
@article{GT_2005_9_4_a3,
     author = {Kapovich, Michael},
     title = {Representations of polygons of finite groups},
     journal = {Geometry & topology},
     pages = {1915--1951},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.1915},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1915/}
}
TY  - JOUR
AU  - Kapovich, Michael
TI  - Representations of polygons of finite groups
JO  - Geometry & topology
PY  - 2005
SP  - 1915
EP  - 1951
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1915/
DO  - 10.2140/gt.2005.9.1915
ID  - GT_2005_9_4_a3
ER  - 
%0 Journal Article
%A Kapovich, Michael
%T Representations of polygons of finite groups
%J Geometry & topology
%D 2005
%P 1915-1951
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1915/
%R 10.2140/gt.2005.9.1915
%F GT_2005_9_4_a3
Kapovich, Michael. Representations of polygons of finite groups. Geometry & topology, Tome 9 (2005) no. 4, pp. 1915-1951. doi : 10.2140/gt.2005.9.1915. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1915/

[1] W Ballmann, J Świątkowski, On $L^2$–cohomology and property (T) for automorphism groups of polyhedral cell complexes, Geom. Funct. Anal. 7 (1997) 615

[2] A F Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer (1983)

[3] M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266

[4] M Bourdon, Sur la dimension de Hausdorff de l'ensemble limite d'une famille de sous-groupes convexes co-compacts, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 1097

[5] B H Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245

[6] B H Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995) 229

[7] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)

[8] J A Carlson, D Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. (1989) 173

[9] K Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. $(2)$ 135 (1992) 165

[10] A Felikson, P Tumarkin, A series of word-hyperbolic Coxeter groups

[11] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[12] M Gromov, R Schoen, Harmonic maps into singular spaces and $p$–adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992) 165

[13] F Haglund, Commensurabilité de résaux uniformes dans les immeubles à angles droits, preprint (2003)

[14] F Haglund, D Wise, in preparation

[15] T W Hungerford, Algebra, Graduate Texts in Mathematics 73, Springer (1980)

[16] S V Ivanov, A Y Ol’Shanskiĭ, Hyperbolic groups and their quotients of bounded exponents, Trans. Amer. Math. Soc. 348 (1996) 2091

[17] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)

[18] S Lang, Algebraic numbers, Addison-Wesley Publishing Co., Reading, MA-Palo Alto-London (1964)

[19] G A Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer (1991)

[20] G D Mostow, Y T Siu, A compact Kähler surface of negative curvature not covered by the ball, Ann. of Math. $(2)$ 112 (1980) 321

[21] M S Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 68, Springer (1972)

[22] J Świątkowski, A class of automorphism groups of polygonal complexes, Q. J. Math. 52 (2001) 231

[23] J Tits, Free subgroups in linear groups, J. Algebra 20 (1972) 250

[24] D T Wise, The residual finiteness of negatively curved polygons of finite groups, Invent. Math. 149 (2002) 579

[25] R J Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics 81, Birkhäuser Verlag (1984)

Cité par Sources :