Toward a general theory of linking invariants
Geometry & topology, Tome 9 (2005) no. 4, pp. 1881-1913.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let N1,N2,M be smooth manifolds with dimN1 + dimN2 + 1 = dimM and let ϕi, for i = 1,2, be smooth mappings of Ni to M where Imϕ1 Imϕ2 = . The classical linking number lk(ϕ1,ϕ2) is defined only when ϕ1[N1] = ϕ2[N2] = 0 H(M).

The affine linking invariant alk is a generalization of lk to the case where ϕ1[N1] or ϕ2[N2] are not zero-homologous. In [?] we constructed the first examples of affine linking invariants of nonzero-homologous spheres in the spherical tangent bundle of a manifold, and showed that alk is intimately related to the causality relation of wave fronts on manifolds. In this paper we develop the general theory.

The invariant alk appears to be a universal Vassiliev–Goussarov invariant of order 1. In the case where ϕ1[N1] = ϕ2[N2] = 0 H(M), it is a splitting of the classical linking number into a collection of independent invariants.

To construct alk we introduce a new pairing μ on the bordism groups of spaces of mappings of N1 and N2 into M, not necessarily under the restriction dimN1 + dimN2 + 1 = dimM. For the zero-dimensional bordism groups, μ can be related to the Hatcher–Quinn invariant. In the case N1 = N2 = S1, it is related to the Chas–Sullivan string homology super Lie bracket, and to the Goldman Lie bracket of free loops on surfaces.

DOI : 10.2140/gt.2005.9.1881
Keywords: linking invariants, winding numbers, Goldman bracket, wave fronts, causality, bordisms, intersections, isotopy, embeddings

Chernov, Vladimir V 1 ; Rudyak, Yuli B 2

1 Department of Mathematics, 6188 Bradley Hall, Dartmouth College, Hanover, New Hampshire 03755-3551, USA
2 Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32611-8105, USA
@article{GT_2005_9_4_a2,
     author = {Chernov, Vladimir V and Rudyak, Yuli B},
     title = {Toward a general theory of linking invariants},
     journal = {Geometry & topology},
     pages = {1881--1913},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2005},
     doi = {10.2140/gt.2005.9.1881},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1881/}
}
TY  - JOUR
AU  - Chernov, Vladimir V
AU  - Rudyak, Yuli B
TI  - Toward a general theory of linking invariants
JO  - Geometry & topology
PY  - 2005
SP  - 1881
EP  - 1913
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1881/
DO  - 10.2140/gt.2005.9.1881
ID  - GT_2005_9_4_a2
ER  - 
%0 Journal Article
%A Chernov, Vladimir V
%A Rudyak, Yuli B
%T Toward a general theory of linking invariants
%J Geometry & topology
%D 2005
%P 1881-1913
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1881/
%R 10.2140/gt.2005.9.1881
%F GT_2005_9_4_a2
Chernov, Vladimir V; Rudyak, Yuli B. Toward a general theory of linking invariants. Geometry & topology, Tome 9 (2005) no. 4, pp. 1881-1913. doi : 10.2140/gt.2005.9.1881. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1881/

[1] V I Arnol’D, Plane curves, their invariants, perestroikas and classifications, from: "Singularities and bifurcations", Adv. Soviet Math. 21, Amer. Math. Soc. (1994) 33

[2] V I Arnol’D, Invariants and perestroikas of fronts on a plane, Trudy Mat. Inst. Steklov. 209 (1995) 14

[3] V I Arnol’D, Mathematical methods of classical mechanics, Graduate Texts in Mathematics 60, Springer (1989)

[4] M Chas, D Sullivan, String topology

[5] M Chas, D Sullivan, Closed string operators in topology leading to Lie bialgebras and higher string algebra, from: "The legacy of Niels Henrik Abel", Springer (2004) 771

[6] V Chernov, Framed knots in 3–manifolds and affine self-linking numbers, J. Knot Theory Ramifications 14 (2005) 791

[7] V Chernov, Y B Rudyak, Affine linking numbers and causality relations for wave fronts

[8] V Chernov, Y B Rudyak, Affine winding numbers and front propagation

[9] V Chernov, Y B Rudyak, Algebraic structures on generalized strings

[10] V Chernov, Y B Rudyak, Toward the general theory of affine linking numbers

[11] M P Do Carmo, Riemannian geometry, Mathematics: Theory Applications, Birkhäuser (1992)

[12] W M Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986) 263

[13] M N Goussarov, Talk at the Rokhlin Seminar, Steklov Institute for Mathematics, St Petersburg, Russia (1987)

[14] M N Gusarov, A new form of the Conway–Jones polynomial of oriented links, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991) 4, 161

[15] A Hatcher, F Quinn, Bordism invariants of intersections of submanifolds, Trans. Amer. Math. Soc. 200 (1974) 327

[16] U Kaiser, Link theory in manifolds, Lecture Notes in Mathematics 1669, Springer (1997)

[17] M A Kervaire, Le théorème de Barden–Mazur–Stallings, Comment. Math. Helv. 40 (1965) 31

[18] U Koschorke, Nielsen coincidence theory in arbitrary codimensions, J. Reine Angew. Math. 598 (2006) 211

[19] U Koschorke, Linking and coincidence invariants, Fund. Math. 184 (2004) 187

[20] R J Low, Twistor linking and causal relations, Classical Quantum Gravity 7 (1990) 177

[21] R J Low, Celestial spheres, light cones, and cuts, J. Math. Phys. 34 (1993) 315

[22] R J Low, Twistor linking and causal relations in exterior Schwarzschild space, Classical Quantum Gravity 11 (1994) 453

[23] J Natário, P Tod, Linking, Legendrian linking and causality, Proc. London Math. Soc. $(3)$ 88 (2004) 251

[24] A Preissman, Quelques propriétés globales des espaces de Riemann, Comment. Math. Helv. 15 (1943) 175

[25] Y B Rudyak, On Thom spectra, orientability, and cobordism, Springer Monographs in Mathematics, Springer (1998)

[26] R Schneiderman, Algebraic linking numbers of knots in 3–manifolds, Algebr. Geom. Topol. 3 (2003) 921

[27] E H Spanier, Algebraic topology, Springer (1981)

[28] R E Stong, Notes on cobordism theory, Mathematical notes, Princeton University Press (1968)

[29] R M Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften 212, Springer (1975)

[30] S L Tabachnikov, Calculation of the Bennequin invariant of a Legendre curve from the geometry of its wave front, Funktsional. Anal. i Prilozhen. 22 (1988) 89

[31] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17

[32] V G Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. $(4)$ 24 (1991) 635

[33] V G Turaev, Intersections of loops in two-dimensional manifolds, Mat. Sb. 106(148) (1978) 566

[34] V G Turaev, O Y Viro, Intersection of loops in two-dimensional manifolds II: Free loops, Mat. Sb. $($N.S.$)$ 121(163) (1983) 359

[35] V A Vassiliev, Cohomology of knot spaces, from: "Theory of singularities and its applications", Adv. Soviet Math. 1, Amer. Math. Soc. (1990) 23

[36] A A Voronov, Notes on universal algebra, from: "Graphs and patterns in mathematics and theoretical physics", Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 81

Cité par Sources :