Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be smooth manifolds with and let , for , be smooth mappings of to where . The classical linking number is defined only when .
The affine linking invariant is a generalization of to the case where or are not zero-homologous. In [?] we constructed the first examples of affine linking invariants of nonzero-homologous spheres in the spherical tangent bundle of a manifold, and showed that is intimately related to the causality relation of wave fronts on manifolds. In this paper we develop the general theory.
The invariant appears to be a universal Vassiliev–Goussarov invariant of order . In the case where , it is a splitting of the classical linking number into a collection of independent invariants.
To construct we introduce a new pairing on the bordism groups of spaces of mappings of and into , not necessarily under the restriction . For the zero-dimensional bordism groups, can be related to the Hatcher–Quinn invariant. In the case , it is related to the Chas–Sullivan string homology super Lie bracket, and to the Goldman Lie bracket of free loops on surfaces.
Chernov, Vladimir V 1 ; Rudyak, Yuli B 2
@article{GT_2005_9_4_a2, author = {Chernov, Vladimir V and Rudyak, Yuli B}, title = {Toward a general theory of linking invariants}, journal = {Geometry & topology}, pages = {1881--1913}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2005}, doi = {10.2140/gt.2005.9.1881}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1881/} }
TY - JOUR AU - Chernov, Vladimir V AU - Rudyak, Yuli B TI - Toward a general theory of linking invariants JO - Geometry & topology PY - 2005 SP - 1881 EP - 1913 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1881/ DO - 10.2140/gt.2005.9.1881 ID - GT_2005_9_4_a2 ER -
Chernov, Vladimir V; Rudyak, Yuli B. Toward a general theory of linking invariants. Geometry & topology, Tome 9 (2005) no. 4, pp. 1881-1913. doi : 10.2140/gt.2005.9.1881. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1881/
[1] Plane curves, their invariants, perestroikas and classifications, from: "Singularities and bifurcations", Adv. Soviet Math. 21, Amer. Math. Soc. (1994) 33
,[2] Invariants and perestroikas of fronts on a plane, Trudy Mat. Inst. Steklov. 209 (1995) 14
,[3] Mathematical methods of classical mechanics, Graduate Texts in Mathematics 60, Springer (1989)
,[4] String topology
, ,[5] Closed string operators in topology leading to Lie bialgebras and higher string algebra, from: "The legacy of Niels Henrik Abel", Springer (2004) 771
, ,[6] Framed knots in 3–manifolds and affine self-linking numbers, J. Knot Theory Ramifications 14 (2005) 791
,[7] Affine linking numbers and causality relations for wave fronts
, ,[8] Affine winding numbers and front propagation
, ,[9] Algebraic structures on generalized strings
, ,[10] Toward the general theory of affine linking numbers
, ,[11] Riemannian geometry, Mathematics: Theory Applications, Birkhäuser (1992)
,[12] Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986) 263
,[13] Talk at the Rokhlin Seminar, Steklov Institute for Mathematics, St Petersburg, Russia (1987)
,[14] A new form of the Conway–Jones polynomial of oriented links, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991) 4, 161
,[15] Bordism invariants of intersections of submanifolds, Trans. Amer. Math. Soc. 200 (1974) 327
, ,[16] Link theory in manifolds, Lecture Notes in Mathematics 1669, Springer (1997)
,[17] Le théorème de Barden–Mazur–Stallings, Comment. Math. Helv. 40 (1965) 31
,[18] Nielsen coincidence theory in arbitrary codimensions, J. Reine Angew. Math. 598 (2006) 211
,[19] Linking and coincidence invariants, Fund. Math. 184 (2004) 187
,[20] Twistor linking and causal relations, Classical Quantum Gravity 7 (1990) 177
,[21] Celestial spheres, light cones, and cuts, J. Math. Phys. 34 (1993) 315
,[22] Twistor linking and causal relations in exterior Schwarzschild space, Classical Quantum Gravity 11 (1994) 453
,[23] Linking, Legendrian linking and causality, Proc. London Math. Soc. $(3)$ 88 (2004) 251
, ,[24] Quelques propriétés globales des espaces de Riemann, Comment. Math. Helv. 15 (1943) 175
,[25] On Thom spectra, orientability, and cobordism, Springer Monographs in Mathematics, Springer (1998)
,[26] Algebraic linking numbers of knots in 3–manifolds, Algebr. Geom. Topol. 3 (2003) 921
,[27] Algebraic topology, Springer (1981)
,[28] Notes on cobordism theory, Mathematical notes, Princeton University Press (1968)
,[29] Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften 212, Springer (1975)
,[30] Calculation of the Bennequin invariant of a Legendre curve from the geometry of its wave front, Funktsional. Anal. i Prilozhen. 22 (1988) 89
,[31] Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17
,[32] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. $(4)$ 24 (1991) 635
,[33] Intersections of loops in two-dimensional manifolds, Mat. Sb. 106(148) (1978) 566
,[34] Intersection of loops in two-dimensional manifolds II: Free loops, Mat. Sb. $($N.S.$)$ 121(163) (1983) 359
, ,[35] Cohomology of knot spaces, from: "Theory of singularities and its applications", Adv. Soviet Math. 1, Amer. Math. Soc. (1990) 23
,[36] Notes on universal algebra, from: "Graphs and patterns in mathematics and theoretical physics", Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 81
,Cité par Sources :