Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A finitely generated group admits a decomposition, called its Grushko decomposition, into a free product of freely indecomposable groups. There is an algorithm to construct the Grushko decomposition of a finite graph of finite rank free groups. In particular, it is possible to decide if such a group is free.
Diao, Guo-An 1 ; Feighn, Mark 2
@article{GT_2005_9_4_a1, author = {Diao, Guo-An and Feighn, Mark}, title = {The {Grushko} decomposition of a finite graph of finite rank free groups: an algorithm}, journal = {Geometry & topology}, pages = {1835--1880}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2005}, doi = {10.2140/gt.2005.9.1835}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1835/} }
TY - JOUR AU - Diao, Guo-An AU - Feighn, Mark TI - The Grushko decomposition of a finite graph of finite rank free groups: an algorithm JO - Geometry & topology PY - 2005 SP - 1835 EP - 1880 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1835/ DO - 10.2140/gt.2005.9.1835 ID - GT_2005_9_4_a1 ER -
%0 Journal Article %A Diao, Guo-An %A Feighn, Mark %T The Grushko decomposition of a finite graph of finite rank free groups: an algorithm %J Geometry & topology %D 2005 %P 1835-1880 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1835/ %R 10.2140/gt.2005.9.1835 %F GT_2005_9_4_a1
Diao, Guo-An; Feighn, Mark. The Grushko decomposition of a finite graph of finite rank free groups: an algorithm. Geometry & topology, Tome 9 (2005) no. 4, pp. 1835-1880. doi : 10.2140/gt.2005.9.1835. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1835/
[1] Some remarks on group actions on trees, Comm. Algebra 4 (1976) 1091
,[2] Outer limits, preprint (1994)
, ,[3] A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85
, ,[4] Bounding the complexity of simplicial group actions on trees, Invent. Math. 103 (1991) 449
, ,[5] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1999)
, ,[6] $\scr V\scr H$ complexes, towers and subgroups of $F\times F$, Math. Proc. Cambridge Philos. Soc. 126 (1999) 481
, ,[7] Splittings of mapping tori of free group automorphisms, Geom. Dedicata 93 (2002) 191
,[8] Combinatorial group theory: a topological approach, London Mathematical Society Student Texts 14, Cambridge University Press (1989)
,[9] Is a graph of finitely generated free groups free? An algorithm (2003)
,[10] Mapping tori of free group automorphisms are coherent, Ann. of Math. $(2)$ 149 (1999) 1061
, ,[11] JSJ-decompositions of finitely presented groups and complexes of groups, Geom. Funct. Anal. 16 (2006) 70
, ,[12] Ascending HNN extensions of finitely generated free groups are Hopfian, Bull. London Math. Soc. 33 (2001) 292
, , , ,[13] Detecting connectedness of the boundary of a hyperbolic group, preprint (1999)
,[14] On Whitehead's algorithm, Bull. Amer. Math. Soc. $($N.S.$)$ 10 (1984) 281
,[15] On generators of a free product of groups (1940) 169
,[16] Algebraic topology, Cambridge University Press (2002)
,[17] Algorithms for essential surfaces in 3–manifolds, from: "Topology and geometry: commemorating SISTAG", Contemp. Math. 314, Amer. Math. Soc. (2002) 107
, , ,[18] Automorphism group of a free group: centralizers and stabilizers, J. Algebra 150 (1992) 435
,[19] Irreducible affine varieties over a free group I: Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472
, ,[20] Effective JSJ decompositions, from: "Groups, languages, algorithms", Contemp. Math. 378, Amer. Math. Soc. (2005) 87
, ,[21] Combinatorial group theory, Classics in Mathematics, Springer (2001)
, ,[22] On group-theoretic decision problems and their classification, Annals of Mathematics Studies 68, Princeton University Press (1971)
,[23] Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. $(2)$ 146 (1997) 53
, ,[24] Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31
,[25] Trees, Springer Monographs in Mathematics, Springer (2003)
,[26] Decomposition of a group with a single defining relation into a free product, Proc. Amer. Math. Soc. 6 (1955) 273
,[27] Topology of finite graphs, Invent. Math. 71 (1983) 551
,[28] Foldings of $G$–trees, from: "Arboreal group theory (Berkeley, CA, 1988)", Math. Sci. Res. Inst. Publ. 19, Springer (1991) 355
,[29] Decompositions of free groups, J. Pure Appl. Algebra 40 (1986) 99
,[30] On certain sets of elements in a free group (1936) 48
,[31] On equivalent sets of elements in a free group, Ann. of Math. $(2)$ 37 (1936) 782
,Cité par Sources :