A characterization of short curves of a Teichmüller geodesic
Geometry & topology, Tome 9 (2005) no. 1, pp. 179-202.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We provide a combinatorial condition characterizing curves that are short along a Teichmüller geodesic. This condition is closely related to the condition provided by Minsky for curves in a hyperbolic 3–manifold to be short. We show that short curves in a hyperbolic manifold homeomorphic to S× are also short in the corresponding Teichmüller geodesic, and we provide examples demonstrating that the converse is not true.

DOI : 10.2140/gt.2005.9.179
Keywords: Teichmüller space, geodesic, short curves, complex of curves, Kleinian group, bounded geometry

Rafi, Kasra 1

1 Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269, USA
@article{GT_2005_9_1_a4,
     author = {Rafi, Kasra},
     title = {A characterization of short curves of a {Teichm\"uller} geodesic},
     journal = {Geometry & topology},
     pages = {179--202},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     doi = {10.2140/gt.2005.9.179},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.179/}
}
TY  - JOUR
AU  - Rafi, Kasra
TI  - A characterization of short curves of a Teichmüller geodesic
JO  - Geometry & topology
PY  - 2005
SP  - 179
EP  - 202
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.179/
DO  - 10.2140/gt.2005.9.179
ID  - GT_2005_9_1_a4
ER  - 
%0 Journal Article
%A Rafi, Kasra
%T A characterization of short curves of a Teichmüller geodesic
%J Geometry & topology
%D 2005
%P 179-202
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.179/
%R 10.2140/gt.2005.9.179
%F GT_2005_9_1_a4
Rafi, Kasra. A characterization of short curves of a Teichmüller geodesic. Geometry & topology, Tome 9 (2005) no. 1, pp. 179-202. doi : 10.2140/gt.2005.9.179. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.179/

[1] J Brock, D Canary, Y Minsky, The classification of Kleinian surface groups II: the ending lamination conjecture, in preparation

[2] Y Minsky, The classification of Kleinian surface groups I: models and bounds

[3] K Rafi, Hyperbolic 3–manifolds and geodesics in Teichmüller space, PhD thesis, SUNY at Stony Brook (2001)

[4] M Rees, The geometric model and large Lipschitz equivalence direct from Teichmüller geodesic, preprint

Cité par Sources :