Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use the Ozsváth–Szabó contact invariant to produce examples of strongly symplectically fillable contact 3–manifolds which are not Stein fillable.
Ghiggini, Paolo 1
@article{GT_2005_9_3_a11, author = {Ghiggini, Paolo}, title = {Strongly fillable contact 3{\textendash}manifolds without {Stein} fillings}, journal = {Geometry & topology}, pages = {1677--1687}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2005}, doi = {10.2140/gt.2005.9.1677}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1677/} }
Ghiggini, Paolo. Strongly fillable contact 3–manifolds without Stein fillings. Geometry & topology, Tome 9 (2005) no. 3, pp. 1677-1687. doi : 10.2140/gt.2005.9.1677. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1677/
[1] Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol. 1 (2001) 153
, ,[2] Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)", London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45
,[3] Unique holomorphically fillable contact structure on the 3–torus, Internat. Math. Res. Notices (1996) 77
,[4] A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277
,[5] On the nonexistence of tight contact structures, Ann. of Math. $(2)$ 153 (2001) 749
, ,[6] Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609
, ,[7] Ozsváth–Szabó invariants and fillability of contact structures, Math. Z. 253 (2006) 159
,[8] Une infinité de structures de contact tendues sur une infinité de variétés, Invent. Math. 135 (1999) 789
,[9] Handlebody construction of Stein surfaces, Ann. of Math. $(2)$ 148 (1998) 619
,[10] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[11] Monopoles and contact structures, Invent. Math. 130 (1997) 209
, ,[12] Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509
, ,[13] Tight, not semi-fillable contact circle bundles, Math. Ann. 328 (2004) 285
, ,[14] An infinite family of tight, not semi-fillable contact three-manifolds, Geom. Topol. 7 (2003) 1055
, ,[15] Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39
, ,[16] Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326
, ,[17] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179
, ,[18] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159
, ,[19] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027
, ,[20] Contact structures with distinct Heegaard Floer invariants, Math. Res. Lett. 11 (2004) 547
,Cité par Sources :