K– and L–theory of the semi-direct product of the discrete 3–dimensional Heisenberg group by ℤ∕4
Geometry & topology, Tome 9 (2005) no. 3, pp. 1639-1676.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We compute the group homology, the topological K–theory of the reduced C–algebra, the algebraic K–theory and the algebraic L–theory of the group ring of the semi-direct product of the three-dimensional discrete Heisenberg group by 4. These computations will follow from the more general treatment of a certain class of groups G which occur as extensions 1 K G Q 1 of a torsionfree group K by a group Q which satisfies certain assumptions. The key ingredients are the Baum–Connes and Farrell–Jones Conjectures and methods from equivariant algebraic topology.

DOI : 10.2140/gt.2005.9.1639
Keywords: $K$– and $L$–groups of group rings and group $C^*$–algebras, three-dimensional Heisenberg group

Lueck, Wolfgang 1

1 Fachbereich Mathematik, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
@article{GT_2005_9_3_a10,
     author = {Lueck, Wolfgang},
     title = {K{\textendash} and {L{\textendash}theory} of the semi-direct product of the discrete 3{\textendash}dimensional {Heisenberg} group by {\ensuremath{\mathbb{Z}}\ensuremath{/}4}},
     journal = {Geometry & topology},
     pages = {1639--1676},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2005},
     doi = {10.2140/gt.2005.9.1639},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1639/}
}
TY  - JOUR
AU  - Lueck, Wolfgang
TI  - K– and L–theory of the semi-direct product of the discrete 3–dimensional Heisenberg group by ℤ∕4
JO  - Geometry & topology
PY  - 2005
SP  - 1639
EP  - 1676
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1639/
DO  - 10.2140/gt.2005.9.1639
ID  - GT_2005_9_3_a10
ER  - 
%0 Journal Article
%A Lueck, Wolfgang
%T K– and L–theory of the semi-direct product of the discrete 3–dimensional Heisenberg group by ℤ∕4
%J Geometry & topology
%D 2005
%P 1639-1676
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1639/
%R 10.2140/gt.2005.9.1639
%F GT_2005_9_3_a10
Lueck, Wolfgang. K– and L–theory of the semi-direct product of the discrete 3–dimensional Heisenberg group by ℤ∕4. Geometry & topology, Tome 9 (2005) no. 3, pp. 1639-1676. doi : 10.2140/gt.2005.9.1639. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1639/

[1] A Bak, The computation of surgery groups of finite groups with abelian 2–hyperelementary subgroups, from: "Algebraic $K$–theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976)", Springer (1976)

[2] M Banagl, A Ranicki, Generalized Arf invariants in algebraic $L$–theory, Adv. Math. 199 (2006) 542

[3] A Bartels, W Lück, Isomorphism conjecture for homotopy $K$–theory and groups acting on trees, J. Pure Appl. Algebra 205 (2006) 660

[4] A C Bartels, On the domain of the assembly map in algebraic $K$–theory, Algebr. Geom. Topol. 3 (2003) 1037

[5] H Bass, Algebraic $K$–theory, W. A. Benjamin, New York-Amsterdam (1968)

[6] P Baum, A Connes, N Higson, Classifying space for proper actions and $K$–theory of group $C^*$–algebras, from: "$C^*$–algebras: 1943–1993 (San Antonio, TX, 1993)", Contemp. Math. 167, Amer. Math. Soc. (1994) 240

[7] J Brookman, J F Davis, Q Khan, Manifolds homotopy equivalent to $P^n\#P^n$, Math. Ann. 338 (2007) 947

[8] S E Cappell, Unitary nilpotent groups and Hermitian $K$–theory I, Bull. Amer. Math. Soc. 80 (1974) 1117

[9] F X Connolly, J F Davis, The surgery obstruction groups of the infinite dihedral group, Geom. Topol. 8 (2004) 1043

[10] F Connolly, A Ranicki, On the calculation of UNil, Adv. Math. 195 (2005) 205

[11] J F Davis, W Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$– and $L$–theory, $K$–Theory 15 (1998) 201

[12] J F Davis, W Lück, The $p$–chain spectral sequence, $K$–Theory 30 (2003) 71

[13] S Echterhoff, W Lück, C Phillips, in preparation (2005)

[14] F T Farrell, L E Jones, Isomorphism conjectures in algebraic $K$–theory, J. Amer. Math. Soc. 6 (1993) 249

[15] F T Farrell, L E Jones, The lower algebraic $K$–theory of virtually infinite cyclic groups, $K$–Theory 9 (1995) 13

[16] T Farrell, L Jones, W Lück, A caveat on the isomorphism conjecture in $L$–theory, Forum Math. 14 (2002) 413

[17] I Hambleton, E K Pedersen, Identifying assembly maps in $K$– and $L$–theory, Math. Ann. 328 (2004) 27

[18] N Higson, G Kasparov, $E$–theory and $KK$–theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001) 23

[19] P H Kropholler, G Mislin, Groups acting on finite-dimensional spaces with finite stabilizers, Comment. Math. Helv. 73 (1998) 122

[20] W Lück, Survey on classifying spaces for families of subgroups (2004)

[21] W Lück, The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149 (2000) 177

[22] W Lück, The relation between the Baum–Connes conjecture and the trace conjecture, Invent. Math. 149 (2002) 123

[23] W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in $K$– and $L$–theory, from: "Handbook of $K$–theory Vol. 1, 2", Springer (2005) 703

[24] W Lück, R Stamm, Computations of $K$– and $L$–theory of cocompact planar groups, $K$–Theory 21 (2000) 249

[25] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer (1977)

[26] G Mislin, Equivariant $K$–homology of the classifying space for proper actions, from: "Proper group actions and the Baum–Connes conjecture", Adv. Courses Math. CRM Barcelona, Birkhäuser (2003) 1

[27] A A Ranicki, Algebraic $L$–theory II: Laurent extensions, Proc. London Math. Soc. $(3)$ 27 (1973) 126

[28] A A Ranicki, Algebraic $L$–theory III: Twisted Laurent extensions, from: "Algebraic K-theory, III: Hermitian K-theory and geometric application (Proc. Conf. Seattle Res. Center, Battelle Memorial Inst., 1972)", Springer (1973)

[29] A Ranicki, On the Novikov conjecture, from: "Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993)", London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 272

[30] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401

[31] J P Serre, Trees, Springer (1980)

[32] T Tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter Co. (1987)

[33] A Valette, Introduction to the Baum–Connes conjecture, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2002)

[34] F Waldhausen, Algebraic $K$–theory of topological spaces I, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 35

Cité par Sources :