Warped cones and property A
Geometry & topology, Tome 9 (2005) no. 1, pp. 163-178.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe a construction (the ‘warped cone construction’) which produces examples of coarse spaces with large groups of translations. We show that by this construction we can obtain many examples of coarse spaces which do not have property A or which are not uniformly embeddable into Hilbert space.

DOI : 10.2140/gt.2005.9.163
Keywords: coarse geometry, amenable action, property A, warped cone

Roe, John 1

1 Department of Mathematics, Penn State University, University Park, Pennsylvania 16802, USA
@article{GT_2005_9_1_a3,
     author = {Roe, John},
     title = {Warped cones and property {A}},
     journal = {Geometry & topology},
     pages = {163--178},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     doi = {10.2140/gt.2005.9.163},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.163/}
}
TY  - JOUR
AU  - Roe, John
TI  - Warped cones and property A
JO  - Geometry & topology
PY  - 2005
SP  - 163
EP  - 178
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.163/
DO  - 10.2140/gt.2005.9.163
ID  - GT_2005_9_1_a3
ER  - 
%0 Journal Article
%A Roe, John
%T Warped cones and property A
%J Geometry & topology
%D 2005
%P 163-178
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.163/
%R 10.2140/gt.2005.9.163
%F GT_2005_9_1_a3
Roe, John. Warped cones and property A. Geometry & topology, Tome 9 (2005) no. 1, pp. 163-178. doi : 10.2140/gt.2005.9.163. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.163/

[1] P A Cherix, M Cowling, P Jolissaint, P Julg, A Valette, Groups with the Haagerup property, Progress in Mathematics 197, Birkhäuser Verlag (2001)

[2] N Higson, J Roe, Warped cones and the coarse Baum–Connes conjecture, in preparation (2004)

[3] N Higson, E K Pedersen, J Roe, $C^*$–algebras and controlled topology, $K$–Theory 11 (1997) 209

[4] N Higson, J Roe, Amenable group actions and the Novikov conjecture, J. Reine Angew. Math. 519 (2000) 143

[5] A Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics 125, Birkhäuser Verlag (1994)

[6] J Roe, From foliations to coarse geometry and back, from: "Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994)", World Sci. Publ., River Edge, NJ (1995) 195

[7] J Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC (1996)

[8] J Roe, Lectures on coarse geometry, University Lecture Series 31, American Mathematical Society (2003)

[9] J L Tu, Remarks on Yu's “property A” for discrete metric spaces and groups, Bull. Soc. Math. France 129 (2001) 115

[10] G Yu, The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000) 201

Cité par Sources :