A better proof of the Goldman–Parker conjecture
Geometry & topology, Tome 9 (2005) no. 3, pp. 1539-1601.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Goldman–Parker Conjecture classifies the complex hyperbolic –reflection ideal triangle groups up to discreteness. We proved the Goldman–Parker Conjecture in an earlier paper using a rigorous computer-assisted proof. In this paper we give a new and improved proof of the Goldman–Parker Conjecture. While the proof relies on the computer for extensive guidance, the proof itself is traditional.

DOI : 10.2140/gt.2005.9.1539
Keywords: hyperbolic, complex reflection group, ideal triangle group, Goldman–Parker conjecture

Schwartz, Richard Evan 1

1 Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA
@article{GT_2005_9_3_a8,
     author = {Schwartz, Richard Evan},
     title = {A better proof of the {Goldman{\textendash}Parker} conjecture},
     journal = {Geometry & topology},
     pages = {1539--1601},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2005},
     doi = {10.2140/gt.2005.9.1539},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1539/}
}
TY  - JOUR
AU  - Schwartz, Richard Evan
TI  - A better proof of the Goldman–Parker conjecture
JO  - Geometry & topology
PY  - 2005
SP  - 1539
EP  - 1601
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1539/
DO  - 10.2140/gt.2005.9.1539
ID  - GT_2005_9_3_a8
ER  - 
%0 Journal Article
%A Schwartz, Richard Evan
%T A better proof of the Goldman–Parker conjecture
%J Geometry & topology
%D 2005
%P 1539-1601
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1539/
%R 10.2140/gt.2005.9.1539
%F GT_2005_9_3_a8
Schwartz, Richard Evan. A better proof of the Goldman–Parker conjecture. Geometry & topology, Tome 9 (2005) no. 3, pp. 1539-1601. doi : 10.2140/gt.2005.9.1539. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1539/

[1] S Anan’In, H Grossi, N Gusevskii, Complex hyperbolic structures on disc bundles over surfaces, preprint (2003)

[2] D B A Epstein, Complex hyperbolic geometry, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 93

[3] E Falbel, J R Parker, The moduli space of the modular group in complex hyperbolic geometry, Invent. Math. 152 (2003) 57

[4] W M Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1999)

[5] W M Goldman, J R Parker, Complex hyperbolic ideal triangle groups, J. Reine Angew. Math. 425 (1992) 71

[6] R E Schwartz, Ideal triangle groups, dented tori, and numerical analysis, Ann. of Math. $(2)$ 153 (2001) 533

[7] R E Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105

[8] R E Schwartz, Spherical CR geometry and Dehn surgery, Annals of Mathematics Studies 165, Princeton University Press (2007)

[9] R E Schwartz, An interactive proof of the Goldman–Parker conjecture, Java applet (2004)

[10] S Wolfram, The Mathematica book, Wolfram Media, Champaign, IL (1999)

Cité par Sources :