Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The Goldman–Parker Conjecture classifies the complex hyperbolic –reflection ideal triangle groups up to discreteness. We proved the Goldman–Parker Conjecture in an earlier paper using a rigorous computer-assisted proof. In this paper we give a new and improved proof of the Goldman–Parker Conjecture. While the proof relies on the computer for extensive guidance, the proof itself is traditional.
Schwartz, Richard Evan 1
@article{GT_2005_9_3_a8, author = {Schwartz, Richard Evan}, title = {A better proof of the {Goldman{\textendash}Parker} conjecture}, journal = {Geometry & topology}, pages = {1539--1601}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2005}, doi = {10.2140/gt.2005.9.1539}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1539/} }
Schwartz, Richard Evan. A better proof of the Goldman–Parker conjecture. Geometry & topology, Tome 9 (2005) no. 3, pp. 1539-1601. doi : 10.2140/gt.2005.9.1539. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1539/
[1] Complex hyperbolic structures on disc bundles over surfaces, preprint (2003)
, , ,[2] Complex hyperbolic geometry, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 93
,[3] The moduli space of the modular group in complex hyperbolic geometry, Invent. Math. 152 (2003) 57
, ,[4] Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1999)
,[5] Complex hyperbolic ideal triangle groups, J. Reine Angew. Math. 425 (1992) 71
, ,[6] Ideal triangle groups, dented tori, and numerical analysis, Ann. of Math. $(2)$ 153 (2001) 533
,[7] Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105
,[8] Spherical CR geometry and Dehn surgery, Annals of Mathematics Studies 165, Princeton University Press (2007)
,[9] An interactive proof of the Goldman–Parker conjecture, Java applet (2004)
,[10] The Mathematica book, Wolfram Media, Champaign, IL (1999)
,Cité par Sources :