Khovanov’s homology for tangles and cobordisms
Geometry & topology, Tome 9 (2005) no. 3, pp. 1443-1499.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a fresh introduction to the Khovanov Homology theory for knots and links, with special emphasis on its extension to tangles, cobordisms and 2–knots. By staying within a world of topological pictures a little longer than in other articles on the subject, the required extension becomes essentially tautological. And then a simple application of an appropriate functor (a “TQFT”) to our pictures takes them to the familiar realm of complexes of (graded) vector spaces and ordinary homological invariants.

DOI : 10.2140/gt.2005.9.1443
Keywords: 2–knots, canopoly, categorification, cobordism, Euler characteristic, Jones polynomial, Kauffman bracket, Khovanov, knot invariants, movie moves, planar algebra, skein modules, tangles, trace groups

Bar-Natan, Dror 1

1 Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada
@article{GT_2005_9_3_a6,
     author = {Bar-Natan, Dror},
     title = {Khovanov{\textquoteright}s homology for tangles and cobordisms},
     journal = {Geometry & topology},
     pages = {1443--1499},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2005},
     doi = {10.2140/gt.2005.9.1443},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1443/}
}
TY  - JOUR
AU  - Bar-Natan, Dror
TI  - Khovanov’s homology for tangles and cobordisms
JO  - Geometry & topology
PY  - 2005
SP  - 1443
EP  - 1499
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1443/
DO  - 10.2140/gt.2005.9.1443
ID  - GT_2005_9_3_a6
ER  - 
%0 Journal Article
%A Bar-Natan, Dror
%T Khovanov’s homology for tangles and cobordisms
%J Geometry & topology
%D 2005
%P 1443-1499
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1443/
%R 10.2140/gt.2005.9.1443
%F GT_2005_9_3_a6
Bar-Natan, Dror. Khovanov’s homology for tangles and cobordisms. Geometry & topology, Tome 9 (2005) no. 3, pp. 1443-1499. doi : 10.2140/gt.2005.9.1443. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1443/

[1] M M Asaeda, J J Przytycki, A S Sikora, Khovanov homology of links in $I$–bundles over surfaces

[2] M M Asaeda, J H Przytycki, A S Sikora, Categorification of the Kauffman bracket skein module of $I$–bundles over surfaces, Algebr. Geom. Topol. 4 (2004) 1177

[3] D Bar-Natan, On Khovanov's categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337

[4] J S Carter, M Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs 55, American Mathematical Society (1998)

[5] J S Carter, M Saito, S Satoh, Ribbon-moves for 2–knots with 1–handles attached and Khovanov–Jacobsson numbers, Proc. Amer. Math. Soc. 134 (2006) 2779

[6] M Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004) 1211

[7] M Jacobsson, Khovanov's conjecture over $\mathbb{Z}[c]$

[8] V Jones, Planar algebras I

[9] L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395

[10] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[11] M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665

[12] M Khovanov, Patterns in knot cohomology I, Experiment. Math. 12 (2003) 365

[13] M Khovanov, An invariant of tangle cobordisms, Trans. Amer. Math. Soc. 358 (2006) 315

[14] E S Lee, On Khovanov invariant for alternating links

[15] J H Przytycki, Fundamentals of Kauffman bracket skein modules, Kobe J. Math. 16 (1999) 45

[16] J A Rasmussen, Khovanov homology and the slice genus

[17] J A Rasmussen, Khovanov's invariant for closed surfaces

[18] R Scharein, KnotPlot

[19] A N Shumakovitch, Torsion of the Khovanov homology

[20] J Stallings, Centerless groups—an algebraic formulation of Gottlieb's theorem, Topology 4 (1965) 129

[21] O Viro, Remarks on definition of Khovanov homology

[22] S Wolfram, The Mathematica book, Wolfram Media, Champaign, IL (1999)

Cité par Sources :