Automorphisms and abstract commensurators of 2–dimensional Artin groups
Geometry & topology, Tome 9 (2005) no. 3, pp. 1381-1441.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper we consider the class of 2–dimensional Artin groups with connected, large type, triangle-free defining graphs (type CLTTF). We classify these groups up to isomorphism, and describe a generating set for the automorphism group of each such Artin group. In the case where the defining graph has no separating edge or vertex we show that the Artin group is not abstractly commensurable to any other CLTTF Artin group. If, moreover, the defining graph satisfies a further “vertex rigidity” condition, then the abstract commensurator group of the Artin group is isomorphic to its automorphism group and generated by inner automorphisms, graph automorphisms (induced from automorphisms of the defining graph), and the involution which maps each standard generator to its inverse.

We observe that the techniques used here to study automorphisms carry over easily to the Coxeter group situation. We thus obtain a classification of the CLTTF type Coxeter groups up to isomorphism and a description of their automorphism groups analogous to that given for the Artin groups.

DOI : 10.2140/gt.2005.9.1381
Keywords: 2–dimensional Artin group, Coxeter group, commensurator group, graph automorphisms, triangle free

Crisp, John 1

1 IMB (UMR 5584 du CNRS), Université de Bourgogne, BP 47 870, 21078 Dijon, France
@article{GT_2005_9_3_a5,
     author = {Crisp, John},
     title = {Automorphisms and abstract commensurators of 2{\textendash}dimensional {Artin} groups},
     journal = {Geometry & topology},
     pages = {1381--1441},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2005},
     doi = {10.2140/gt.2005.9.1381},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1381/}
}
TY  - JOUR
AU  - Crisp, John
TI  - Automorphisms and abstract commensurators of 2–dimensional Artin groups
JO  - Geometry & topology
PY  - 2005
SP  - 1381
EP  - 1441
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1381/
DO  - 10.2140/gt.2005.9.1381
ID  - GT_2005_9_3_a5
ER  - 
%0 Journal Article
%A Crisp, John
%T Automorphisms and abstract commensurators of 2–dimensional Artin groups
%J Geometry & topology
%D 2005
%P 1381-1441
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1381/
%R 10.2140/gt.2005.9.1381
%F GT_2005_9_3_a5
Crisp, John. Automorphisms and abstract commensurators of 2–dimensional Artin groups. Geometry & topology, Tome 9 (2005) no. 3, pp. 1381-1441. doi : 10.2140/gt.2005.9.1381. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1381/

[1] E Artin, Braids and permutations, Ann. of Math. $(2)$ 48 (1947) 643

[2] P Bahls, Automorphisms of Coxeter groups, Trans. Amer. Math. Soc. 358 (2006) 1781

[3] P Bahls, Strongly rigid even Coxeter groups, Topology Proc. 28 (2004) 19

[4] N Brady, J P Mccammond, B Mühlherr, W D Neumann, Rigidity of Coxeter groups and Artin groups, from: "Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000)" (2002) 91

[5] N Brady, J Crisp, Two-dimensional Artin groups with $\mathrm{CAT}(0)$ dimension three, from: "Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000)" (2002) 185

[6] M R Bridson, On the semisimplicity of polyhedral isometries, Proc. Amer. Math. Soc. 127 (1999) 2143

[7] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1999)

[8] R Charney, J Crisp, Automorphism groups of some affine and finite type Artin groups, Math. Res. Lett. 12 (2005) 321

[9] R Charney, M W Davis, The $K(\pi,1)$–problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8 (1995) 597

[10] A M Cohen, L Paris, On a theorem of Artin, J. Group Theory 6 (2003) 421

[11] C Droms, Isomorphisms of graph groups, Proc. Amer. Math. Soc. 100 (1987) 407

[12] N D Gilbert, J Howie, V Metaftsis, E Raptis, Tree actions of automorphism groups, J. Group Theory 3 (2000) 213

[13] E Godelle, Parabolic subgroups of Artin groups of type FC, Pacific J. Math. 208 (2003) 243

[14] E Godelle, Artin–Tits groups with CAT(0) Deligne complex, J. Pure Appl. Algebra 208 (2007) 39

[15] H Van Der Lek, The homotopy type of complex hyperplane complements, PhD thesis, University of Nijmegen (1983)

[16] G Moussong, Hyperbolic Coxeter groups, PhD thesis, Ohio State University (1988)

[17] B Mühlherr, The isomorphism problem for Coxeter groups, from: "The Coxeter legacy", Amer. Math. Soc. (2006) 1

[18] B Mühlherr, R Weidmann, Rigidity of skew-angled Coxeter groups, Adv. Geom. 2 (2002) 391

[19] G A Niblo, L D Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621

[20] L Paris, Artin groups of spherical type up to isomorphism, J. Algebra 281 (2004) 666

[21] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. $(3)$ 71 (1995) 585

Cité par Sources :