Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We determine the groups which can appear as the normalizer of a maximal torus in a connected 2–compact group. The technique depends on using ideas of Tits to give a novel description of the normalizer of the torus in a connected compact Lie group, and then showing that this description can be extended to the 2–compact case.
Dwyer, William G 1 ; Wilkerson, C W 2
@article{GT_2005_9_3_a4, author = {Dwyer, William G and Wilkerson, C W}, title = {Normalizers of tori}, journal = {Geometry & topology}, pages = {1337--1380}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2005}, doi = {10.2140/gt.2005.9.1337}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1337/} }
Dwyer, William G; Wilkerson, C W. Normalizers of tori. Geometry & topology, Tome 9 (2005) no. 3, pp. 1337-1380. doi : 10.2140/gt.2005.9.1337. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1337/
[1] The normalizer splitting conjecture for $p$–compact groups, Fund. Math. 161 (1999) 1
,[2] The classification of $p$–compact groups for $p$ odd, Ann. of Math. $(2)$ 167 (2008) 95
, , , ,[3] Finite loop spaces are manifolds, Acta Math. 192 (2004) 5
, , , ,[4] Éléments de mathématique. Fasc XXXIV: Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann (1968)
,[5] Éléments de mathématique: groupes et algèbres de Lie, Chapitre 9: Groupes de Lie réels compacts, Masson (1982) 138
,[6] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)
,[7] The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974) 425
, ,[8] Normalizers of maximal tori, from: "Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974)", Springer (1974)
, , ,[9] Maps between classifying spaces, from: "Algebraic topology, Barcelona, 1986", Lecture Notes in Math. 1298, Springer (1987) 106
, ,[10] A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993) 37
, ,[11] Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. $(2)$ 139 (1994) 395
, ,[12] The center of a $p$–compact group, from: "The Cech centennial (Boston, MA, 1993)", Contemp. Math. 181, Amer. Math. Soc. (1995) 119
, ,[13] Product splittings for $p$–compact groups, Fund. Math. 147 (1995) 279
, ,[14] The elementary geometric structure of compact Lie groups, Bull. London Math. Soc. 30 (1998) 337
, ,[15] Centers and Coxeter elements, from: "Homotopy methods in algebraic topology (Boulder, CO, 1999)", Contemp. Math. 271, Amer. Math. Soc. (2001) 53
, ,[16] The homotopic uniqueness of $BS^3$, from: "Algebraic topology, Barcelona, 1986", Lecture Notes in Math. 1298, Springer (1987) 90
, , ,[17] Hecke algebras and reflections in Coxeter groups (1987)
,[18] Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press (1962)
,[19] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press (1990)
,[20] Théorie homotopique des groupes de Lie (d'après W. G. Dwyer et C. W. Wilkerson), Astérisque (1995) 3, 21
,[21] Centers and finite coverings of finite loop spaces, J. Reine Angew. Math. 456 (1994) 99
, ,[22] Homotopy Lie groups, Bull. Amer. Math. Soc. $($N.S.$)$ 32 (1995) 413
,[23] $N$–determined $p$–compact groups, Fund. Math. 173 (2002) 201
,[24] On the 2–compact group $\mathrm{DI}(4)$, J. Reine Angew. Math. 555 (2003) 163
,[25] Maps between classifying spaces, Math. Z. 207 (1991) 153
,[26] Classifying spaces of compact Lie groups and finite loop spaces, from: "Handbook of algebraic topology", North-Holland (1995) 1049
,[27] A uniqueness result for orthogonal groups as 2–compact groups, Arch. Math. $($Basel$)$ 78 (2002) 110
,[28] On the “classifying space” functor for compact Lie groups, J. London Math. Soc. $(2)$ 52 (1995) 185
,[29] Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer (1990)
, ,[30] Sur le classifiant d'un groupe de Lie compact connexe, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992) 833
,[31] Algèbres de Lie semi-simples complexes, W. A. Benjamin, inc., New York-Amsterdam (1966)
,[32] Linear algebraic groups, Progress in Mathematics 9, Birkhäuser (1998)
,[33] Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964) 392
,[34] Normalisateurs de tores I: Groupes de Coxeter étendus, J. Algebra 4 (1966) 96
,Cité par Sources :