Normalizers of tori
Geometry & topology, Tome 9 (2005) no. 3, pp. 1337-1380.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We determine the groups which can appear as the normalizer of a maximal torus in a connected 2–compact group. The technique depends on using ideas of Tits to give a novel description of the normalizer of the torus in a connected compact Lie group, and then showing that this description can be extended to the 2–compact case.

DOI : 10.2140/gt.2005.9.1337
Keywords: maximal torus, Weyl group, 2–compact group

Dwyer, William G 1 ; Wilkerson, C W 2

1 Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, USA
2 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA
@article{GT_2005_9_3_a4,
     author = {Dwyer, William G and Wilkerson, C W},
     title = {Normalizers of tori},
     journal = {Geometry & topology},
     pages = {1337--1380},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2005},
     doi = {10.2140/gt.2005.9.1337},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1337/}
}
TY  - JOUR
AU  - Dwyer, William G
AU  - Wilkerson, C W
TI  - Normalizers of tori
JO  - Geometry & topology
PY  - 2005
SP  - 1337
EP  - 1380
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1337/
DO  - 10.2140/gt.2005.9.1337
ID  - GT_2005_9_3_a4
ER  - 
%0 Journal Article
%A Dwyer, William G
%A Wilkerson, C W
%T Normalizers of tori
%J Geometry & topology
%D 2005
%P 1337-1380
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1337/
%R 10.2140/gt.2005.9.1337
%F GT_2005_9_3_a4
Dwyer, William G; Wilkerson, C W. Normalizers of tori. Geometry & topology, Tome 9 (2005) no. 3, pp. 1337-1380. doi : 10.2140/gt.2005.9.1337. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1337/

[1] K K S Andersen, The normalizer splitting conjecture for $p$–compact groups, Fund. Math. 161 (1999) 1

[2] K K S Andersen, J Grodal, J M Møller, A Viruel, The classification of $p$–compact groups for $p$ odd, Ann. of Math. $(2)$ 167 (2008) 95

[3] T Bauer, N Kitchloo, D Notbohm, E K Pedersen, Finite loop spaces are manifolds, Acta Math. 192 (2004) 5

[4] N Bourbaki, Éléments de mathématique. Fasc XXXIV: Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann (1968)

[5] N Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Chapitre 9: Groupes de Lie réels compacts, Masson (1982) 138

[6] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)

[7] A Clark, J Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974) 425

[8] M Curtis, A Wiederhold, B Williams, Normalizers of maximal tori, from: "Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974)", Springer (1974)

[9] W Dwyer, A Zabrodsky, Maps between classifying spaces, from: "Algebraic topology, Barcelona, 1986", Lecture Notes in Math. 1298, Springer (1987) 106

[10] W G Dwyer, C W Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993) 37

[11] W G Dwyer, C W Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. $(2)$ 139 (1994) 395

[12] W G Dwyer, C W Wilkerson, The center of a $p$–compact group, from: "The Cech centennial (Boston, MA, 1993)", Contemp. Math. 181, Amer. Math. Soc. (1995) 119

[13] W G Dwyer, C W Wilkerson, Product splittings for $p$–compact groups, Fund. Math. 147 (1995) 279

[14] W G Dwyer, C W Wilkerson, The elementary geometric structure of compact Lie groups, Bull. London Math. Soc. 30 (1998) 337

[15] W G Dwyer, C W Wilkerson, Centers and Coxeter elements, from: "Homotopy methods in algebraic topology (Boulder, CO, 1999)", Contemp. Math. 271, Amer. Math. Soc. (2001) 53

[16] W G Dwyer, H R Miller, C W Wilkerson, The homotopic uniqueness of $BS^3$, from: "Algebraic topology, Barcelona, 1986", Lecture Notes in Math. 1298, Springer (1987) 90

[17] M J Dyer, Hecke algebras and reflections in Coxeter groups (1987)

[18] S Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press (1962)

[19] J E Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press (1990)

[20] J Lannes, Théorie homotopique des groupes de Lie (d'après W. G. Dwyer et C. W. Wilkerson), Astérisque (1995) 3, 21

[21] J M Møller, D Notbohm, Centers and finite coverings of finite loop spaces, J. Reine Angew. Math. 456 (1994) 99

[22] J M Møller, Homotopy Lie groups, Bull. Amer. Math. Soc. $($N.S.$)$ 32 (1995) 413

[23] J M Møller, $N$–determined $p$–compact groups, Fund. Math. 173 (2002) 201

[24] D Notbohm, On the 2–compact group $\mathrm{DI}(4)$, J. Reine Angew. Math. 555 (2003) 163

[25] D Notbohm, Maps between classifying spaces, Math. Z. 207 (1991) 153

[26] D Notbohm, Classifying spaces of compact Lie groups and finite loop spaces, from: "Handbook of algebraic topology", North-Holland (1995) 1049

[27] D Notbohm, A uniqueness result for orthogonal groups as 2–compact groups, Arch. Math. $($Basel$)$ 78 (2002) 110

[28] D Notbohm, On the “classifying space” functor for compact Lie groups, J. London Math. Soc. $(2)$ 52 (1995) 185

[29] A L Onishchik, È B Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer (1990)

[30] A Osse, Sur le classifiant d'un groupe de Lie compact connexe, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992) 833

[31] J P Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, inc., New York-Amsterdam (1966)

[32] T A Springer, Linear algebraic groups, Progress in Mathematics 9, Birkhäuser (1998)

[33] R Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964) 392

[34] J Tits, Normalisateurs de tores I: Groupes de Coxeter étendus, J. Algebra 4 (1966) 96

Cité par Sources :