Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The homology groups of the automorphism group of a free group are known to stabilize as the number of generators of the free group goes to infinity, and this paper relativizes this result to a family of groups that can be defined in terms of homotopy equivalences of a graph fixing a subgraph. This is needed for the second author’s recent work on the relationship between the infinite loop structures on the classifying spaces of mapping class groups of surfaces and automorphism groups of free groups, after stabilization and plus-construction. We show more generally that the homology groups of mapping class groups of most compact orientable 3–manifolds, modulo twists along 2–spheres, stabilize under iterated connected sum with the product of a circle and a 2–sphere, and the stable groups are invariant under connected sum with a solid torus or a ball. These results are proved using complexes of disks and spheres in reducible 3–manifolds.
Hatcher, Allen 1 ; Wahl, Nathalie 2
@article{GT_2005_9_3_a3, author = {Hatcher, Allen and Wahl, Nathalie}, title = {Stabilization for the automorphisms of free groups with boundaries}, journal = {Geometry & topology}, pages = {1295--1336}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2005}, doi = {10.2140/gt.2005.9.1295}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1295/} }
TY - JOUR AU - Hatcher, Allen AU - Wahl, Nathalie TI - Stabilization for the automorphisms of free groups with boundaries JO - Geometry & topology PY - 2005 SP - 1295 EP - 1336 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1295/ DO - 10.2140/gt.2005.9.1295 ID - GT_2005_9_3_a3 ER -
Hatcher, Allen; Wahl, Nathalie. Stabilization for the automorphisms of free groups with boundaries. Geometry & topology, Tome 9 (2005) no. 3, pp. 1295-1336. doi : 10.2140/gt.2005.9.1295. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1295/
[1] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)
,[2] Cohomological dimension and symmetric automorphisms of a free group, Comment. Math. Helv. 64 (1989) 44
,[3] The Smale conjecture for hyperbolic 3–manifolds: $\mathrm{Isom}(M^3){\simeq}\mathrm{Diff}(M^3)$, J. Differential Geom. 58 (2001) 113
,[4] Mod $p$ homology of the stable mapping class group, Topology 43 (2004) 1105
,[5] Homeomorphisms of sufficiently large $P^{2}$–irreducible 3–manifolds, Topology 15 (1976) 343
,[6] A proof of a Smale conjecture, $\mathrm{Diff}(S^{3})\simeq \mathrm{O}(4)$, Ann. of Math. $(2)$ 117 (1983) 553
,[7] Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995) 39
,[8] Algebraic topology, Cambridge University Press (2002)
,[9] Cerf theory for graphs, J. London Math. Soc. $(2)$ 58 (1998) 633
, ,[10] Rational homology of $\mathrm{Aut}(F_n)$, Math. Res. Lett. 5 (1998) 759
, ,[11] Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol. 4 (2004) 1253
, ,[12] Difféomorphismes des sommes connexes en dimension trois, Topology 23 (1984) 423
, ,[13] Stabilization of the homology of Teichmüller modular groups, Algebra i Analiz 1 (1989) 110
,[14] Automorphisms of free groups with boundaries, Algebr. Geom. Topol. 4 (2004) 543
, ,[15] Topologie de la dimension trois: homotopie et isotopie, Astérisque 12, Société Mathématique de France (1974)
,[16] Fixed point free involutions on the 3–sphere, Ann. of Math. $(2)$ 72 (1960) 603
,[17] The stable moduli space of Riemann surfaces: Mumford's conjecture, Ann. of Math. $(2)$ 165 (2007) 843
, ,[18] On basis-conjugating automorphisms of free groups, Canad. J. Math. 38 (1986) 1525
,[19] Construction of universal bundles II, Ann. of Math. $(2)$ 63 (1956) 430
,[20] Algebraic topology, McGraw-Hill Book Co. (1966)
,[21] On the homotopy of the stable mapping class group, Invent. Math. 130 (1997) 257
,[22] Homology stability for $\mathrm{O}_{n,n}$, Comm. Algebra 7 (1979) 9
,[23] From mapping class groups to automorphism groups of free groups, J. London Math. Soc. $(2)$ 72 (2005) 510
,Cité par Sources :