Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A function of several variables is called holonomic if, roughly speaking, it is determined from finitely many of its values via finitely many linear recursion relations with polynomial coefficients. Zeilberger was the first to notice that the abstract notion of holonomicity can be applied to verify, in a systematic and computerized way, combinatorial identities among special functions. Using a general state sum definition of the colored Jones function of a link in 3–space, we prove from first principles that the colored Jones function is a multisum of a –proper-hypergeometric function, and thus it is –holonomic. We demonstrate our results by computer calculations.
Garoufalidis, Stavros 1 ; Le, Thang T Q 1
@article{GT_2005_9_3_a2, author = {Garoufalidis, Stavros and Le, Thang T Q}, title = {The colored {Jones} function is q-holonomic}, journal = {Geometry & topology}, pages = {1253--1293}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2005}, doi = {10.2140/gt.2005.9.1253}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1253/} }
TY - JOUR AU - Garoufalidis, Stavros AU - Le, Thang T Q TI - The colored Jones function is q-holonomic JO - Geometry & topology PY - 2005 SP - 1253 EP - 1293 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1253/ DO - 10.2140/gt.2005.9.1253 ID - GT_2005_9_3_a2 ER -
Garoufalidis, Stavros; Le, Thang T Q. The colored Jones function is q-holonomic. Geometry & topology, Tome 9 (2005) no. 3, pp. 1253-1293. doi : 10.2140/gt.2005.9.1253. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1253/
[1] ColoredJones.nb, Mathematica program, part of KnotAtlas (2003)
,[2] Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients, Funkcional. Anal. i Priložen. 5 (1971) 1
,[3] Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972) 26
,[4] Rings of differential operators, North-Holland Mathematical Library 21, North-Holland Publishing Co. (1979)
,[5] Algebraic $D$–modules, Perspectives in Mathematics 2, Academic Press (1987)
, , , , , ,[6] Démonstration “automatique” d'identités et fonctions hypergéométriques (d'après D. Zeilberger), Astérisque (1992) 3, 41
,[7] A primer of algebraic $D$–modules, London Mathematical Society Student Texts 33, Cambridge University Press (1995)
,[8] Non-commutative elimination in Ore algebras proves multivariate identities, J. Symbolic Comput. 26 (1998) 187
, ,[9] The quantum MacMahon master theorem, Proc. Natl. Acad. Sci. USA 103 (2006) 13928
, , ,[10] Difference and differential equations for the colored Jones function, J. Knot Theory Ramifications 17 (2008) 495
,[11] On the characteristic and deformation varieties of a knot, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry (2004) 291
,[12] The $C$–polynomial of a knot, Algebr. Geom. Topol. 6 (2006) 1623
, ,[13] Non-commutative trigonometry and the $A$–polynomial of the trefoil knot, Math. Proc. Cambridge Philos. Soc. 133 (2002) 311
,[14] The noncommutative A-ideal of a $(2,2p+1)$–torus knot determines its Jones polynomial, J. Knot Theory Ramifications 12 (2003) 187
, ,[15] On the quantum $\mathrm{sl}_2$ invariants of knots and integral homology spheres, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry (2002) 55
,[16]
, , in preparation[17] Lectures on quantum groups, Graduate Studies in Mathematics 6, American Mathematical Society (1996)
,[18] Algebras of functions on quantum groups. Part I, Mathematical Surveys and Monographs 56, American Mathematical Society (1998)
, ,[19] Difference equation of the colored Jones polynomial for torus knot, Internat. J. Math. 15 (2004) 959
,[20] Integrality and symmetry of quantum link invariants, Duke Math. J. 102 (2000) 273
,[21] The colored Jones polynomial and the $A$–polynomial of knots, Adv. Math. 207 (2006) 782
,[22] Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser (1993)
,[23] Quantum groups at roots of 1, Geom. Dedicata 35 (1990) 89
,[24] Équations différentielles à coefficients polynomiaux, Progress in Mathematics 96, Birkhäuser (1991)
,[25] Skein-theoretical derivation of some formulas of Habiro, Algebr. Geom. Topol. 3 (2003) 537
,[26] A Mathematica $q$–analogue of Zeilberger's algorithm based on an algebraically motivated approach to $q$–hypergeometric telescoping, from: "Special functions, $q$–series and related topics (Toronto, ON, 1995)", Fields Inst. Commun. 14, Amer. Math. Soc. (1997) 179
, ,[27] Mathematica software
, ,[28] $A=B$, A K Peters Ltd. (1996)
, , ,[29] Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1
, ,[30] qMultiSum—a package for proving $q$–hypergeometric multiple summation identities, J. Symbolic Comput. 35 (2003) 349
,[31] Systèmes holonomes d'équations aux $q$–différences, from: "$D$–modules and microlocal geometry (Lisbon, 1990)", de Gruyter (1993) 125
,[32] The Yang–Baxter equation and invariants of links, Invent. Math. 92 (1988) 527
,[33] An algorithmic proof theory for hypergeometric (ordinary and “$q$”) multisum/integral identities, Invent. Math. 108 (1992) 575
, ,[34] A two-line algorithm for proving $q$–hypergeometric identities, J. Math. Anal. Appl. 213 (1997) 1
,[35] A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (1990) 321
,Cité par Sources :