Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Examples are given of prime Legendrian knots in the standard contact 3–space that have arbitrarily many distinct Chekanov polynomials, refuting a conjecture of Lenny Ng. These are constructed using a new “Legendrian tangle replacement” technique. This technique is then used to show that the phenomenon of multiple Chekanov polynomials is in fact quite common. Finally, building on unpublished work of Yufa and Branson, a tabulation is given of Legendrian fronts, along with their Chekanov polynomials, representing maximal Thurston–Bennequin Legendrian knots for each knot type of nine or fewer crossings. These knots are paired so that the front for the mirror of any knot is obtained in a standard way by rotating the front for the knot.
Melvin, Paul 1 ; Shrestha, Sumana 2
@article{GT_2005_9_3_a1, author = {Melvin, Paul and Shrestha, Sumana}, title = {The nonuniqueness of {Chekanov} polynomials of {Legendrian} knots}, journal = {Geometry & topology}, pages = {1221--1252}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2005}, doi = {10.2140/gt.2005.9.1221}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1221/} }
TY - JOUR AU - Melvin, Paul AU - Shrestha, Sumana TI - The nonuniqueness of Chekanov polynomials of Legendrian knots JO - Geometry & topology PY - 2005 SP - 1221 EP - 1252 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1221/ DO - 10.2140/gt.2005.9.1221 ID - GT_2005_9_3_a1 ER -
Melvin, Paul; Shrestha, Sumana. The nonuniqueness of Chekanov polynomials of Legendrian knots. Geometry & topology, Tome 9 (2005) no. 3, pp. 1221-1252. doi : 10.2140/gt.2005.9.1221. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1221/
[1] Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)
,[2] Tabulation of the Legendrian knots by ambient isotopy, preprint (2001)
,[3] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441
,[4] Invariants of Legendrian knots, from: "Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002)", Higher Ed. Press (2002) 385
,[5] Combinatorics of fronts of Legendrian links, and Arnol'd's 4–conjectures, Uspekhi Mat. Nauk 60 (2005) 99
, ,[6] Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 327
,[7] Classification of topologically trivial Legendrian knots, from: "Geometry, topology, and dynamics (Montreal, PQ, 1995)", CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 17
, ,[8] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[9] Knots and contact geometry I: Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63
, ,[10] On connected sums and Legendrian knots, Adv. Math. 179 (2003) 59
, ,[11] Cabling and transverse simplicity, Ann. of Math. $(2)$ 162 (2005) 1305
, ,[12] Problems in low dimensional contact topology, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 337
, ,[13] Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom. 1 (2002) 321
, , ,[14] Chekanov–Eliashberg invariant of Legendrian knots: existence of augmentations, J. Geom. Phys. 47 (2003) 43
,[15] Invariants of Legendrian knots and decompositions of front diagrams, Mosc. Math. J. 4 (2004) 707, 783
, ,[16] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515
,[17] Prime knots and concordance, Math. Proc. Cambridge Philos. Soc. 86 (1979) 437
, ,[18] Prime knots and tangles, Trans. Amer. Math. Soc. 267 (1981) 321
,[19] Maximal Thurston–Bennequin number of two-bridge links, Algebr. Geom. Topol. 1 (2001) 427
,[20] Computable Legendrian invariants, Topology 42 (2003) 55
,[21] Framed knot contact homology, Duke Math. J. 141 (2008) 365
,[22] Knots and links, Mathematics Lecture Series 7, Publish or Perish (1976)
,[23] Legendrian knot theory, book in preparation
,[24] Augmentations and rulings of Legendrian knots, Int. Math. Res. Not. (2005) 1157
,[25] Duality for Legendrian contact homology, Geom. Topol. 10 (2006) 2351
,[26] Thurston–Bennequin invariant of Legendrian knots, senior thesis, MIT (2001)
,Cité par Sources :