Algebraic cycles and the classical groups II: Quaternionic cycles
Geometry & topology, Tome 9 (2005) no. 3, pp. 1187-1220.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In part I of this work we studied the spaces of real algebraic cycles on a complex projective space (V ), where V carries a real structure, and completely determined their homotopy type. We also extended some functors in K–theory to algebraic cycles, establishing a direct relationship to characteristic classes for the classical groups, specially Stiefel–Whitney classes. In this sequel, we establish corresponding results in the case where V has a quaternionic structure. The determination of the homotopy type of quaternionic algebraic cycles is more involved than in the real case, but has a similarly simple description. The stabilized space of quaternionic algebraic cycles admits a nontrivial infinite loop space structure yielding, in particular, a delooping of the total Pontrjagin class map. This stabilized space is directly related to an extended notion of quaternionic spaces and bundles (KH–theory), in analogy with Atiyah’s real spaces and KR–theory, and the characteristic classes that we introduce for these objects are nontrivial. The paper ends with various examples and applications.

DOI : 10.2140/gt.2005.9.1187
Keywords: quaternionic algebraic cycles, characteristic classes, equivariant infinite loop spaces, quaternionic $K$–theory

Lawson, H Blaine 1 ; Lima-Filho, Paulo 2 ; Michelsohn, Marie-Louise 1

1 Department of Mathematics, Stony Brook University, Stony Brook, New York 11794, USA
2 Department of Mathematics, Texas A&M University, College Station, Texas 77843, USA
@article{GT_2005_9_3_a0,
     author = {Lawson, H Blaine and Lima-Filho, Paulo and Michelsohn, Marie-Louise},
     title = {Algebraic cycles and the classical groups {II:} {Quaternionic} cycles},
     journal = {Geometry & topology},
     pages = {1187--1220},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2005},
     doi = {10.2140/gt.2005.9.1187},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1187/}
}
TY  - JOUR
AU  - Lawson, H Blaine
AU  - Lima-Filho, Paulo
AU  - Michelsohn, Marie-Louise
TI  - Algebraic cycles and the classical groups II: Quaternionic cycles
JO  - Geometry & topology
PY  - 2005
SP  - 1187
EP  - 1220
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1187/
DO  - 10.2140/gt.2005.9.1187
ID  - GT_2005_9_3_a0
ER  - 
%0 Journal Article
%A Lawson, H Blaine
%A Lima-Filho, Paulo
%A Michelsohn, Marie-Louise
%T Algebraic cycles and the classical groups II: Quaternionic cycles
%J Geometry & topology
%D 2005
%P 1187-1220
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1187/
%R 10.2140/gt.2005.9.1187
%F GT_2005_9_3_a0
Lawson, H Blaine; Lima-Filho, Paulo; Michelsohn, Marie-Louise. Algebraic cycles and the classical groups II: Quaternionic cycles. Geometry & topology, Tome 9 (2005) no. 3, pp. 1187-1220. doi : 10.2140/gt.2005.9.1187. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1187/

[1] M F Atiyah, $K$–theory and reality, Quart. J. Math. Oxford Ser. $(2)$ 17 (1966) 367

[2] C P Boyer, H B Lawson Jr, P Lima-Filho, B M Mann, M L Michelsohn, Algebraic cycles and infinite loop spaces, Invent. Math. 113 (1993) 373

[3] A Dold, R Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. $(2)$ 67 (1958) 239

[4] P F Dos Santos, Algebraic cycles on real varieties and $\mathbb{Z}/2$-equivariant homotopy theory, Proc. London Math. Soc. $(3)$ 86 (2003) 513

[5] P F Dos Santos, P Lima-Filho, Quaternionic algebraic cycles and reality, Trans. Amer. Math. Soc. 356 (2004) 4701

[6] P F Dos Santos, P Lima-Filho, Quaternionic $K$–theory for real varieties, in preparation

[7] J L Dupont, Symplectic bundles and $KR$–theory, Math. Scand. 24 (1969) 27

[8] J Dupont, A note on characteristic classes for real vector bundles, preprint (1999)

[9] E M Friedlander, H B Lawson Jr, A theory of algebraic cocycles, Ann. of Math. $(2)$ 136 (1992) 361

[10] W Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 2, Springer (1984)

[11] F R Harvey, H B Lawson Jr, On boundaries of complex analytic varieties I, Ann. of Math. $(2)$ 102 (1975) 223

[12] T K Lam, Spaces of real algebraic cycles and homotopy theory, PhD thesis, SUNY, Stony Brook (1990)

[13] H B Lawson Jr, Algebraic cycles and homotopy theory, Ann. of Math. $(2)$ 129 (1989) 253

[14] H B Lawson Jr, P Lima-Filho, M L Michelsohn, On equivariant algebraic suspension, J. Algebraic Geom. 7 (1998) 627

[15] H B Lawson Jr, P Lima-Filho, M L Michelsohn, Algebraic cycles and the classical groups I: Real cycles, Topology 42 (2003) 467

[16] H B Lawson Jr, M L Michelsohn, Algebraic cycles, Bott periodicity, and the Chern characteristic map, from: "The mathematical heritage of Hermann Weyl (Durham, NC, 1987)", Proc. Sympos. Pure Math. 48, Amer. Math. Soc. (1988) 241

[17] P Lima-Filho, Lawson homology for quasiprojective varieties, Compositio Math. 84 (1992) 1

[18] P Lima-Filho, Completions and fibrations for topological monoids, Trans. Amer. Math. Soc. 340 (1993) 127

[19] P Lima-Filho, On the equivariant homotopy of free abelian groups on $G$–spaces and $G$–spectra, Math. Z. 224 (1997) 567

[20] J P May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics 577, Springer (1977) 268

[21] J W Milnor, J D Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press (1974)

[22] J Mostovoy, Quaternion flavored cycle spaces, ICMS preprint, Edinburgh University (1975)

Cité par Sources :