Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
If is a group, a pseudocharacter is a function which is “almost” a homomorphism. If admits a nontrivial pseudocharacter , we define the space of ends of relative to and show that if the space of ends is complicated enough, then contains a nonabelian free group. We also construct a quasi-action by on a tree whose space of ends contains the space of ends of relative to . This construction gives rise to examples of “exotic” quasi-actions on trees.
Manning, Jason Fox 1
@article{GT_2005_9_2_a10, author = {Manning, Jason Fox}, title = {Geometry of pseudocharacters}, journal = {Geometry & topology}, pages = {1147--1185}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2005}, doi = {10.2140/gt.2005.9.1147}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1147/} }
Manning, Jason Fox. Geometry of pseudocharacters. Geometry & topology, Tome 9 (2005) no. 2, pp. 1147-1185. doi : 10.2140/gt.2005.9.1147. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1147/
[1] Surface groups in some surgered manifolds, Topology 40 (2001) 197
,[2] Longueur stable des commutateurs, Enseign. Math. $(2)$ 37 (1991) 109
,[3] Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002) 69
, ,[4] Spherical space forms and Dehn filling, Topology 35 (1996) 809
, ,[5] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1999)
, ,[6] Some remarks on bounded cohomology, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 53
,[7] Bounded cohomology for surface groups, Topology 23 (1984) 29
, ,[8] Bounded cochains on 3–manifolds
,[9] The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997) 1275
, ,[10] Pseudocharacters of free products of semigroups, Funktsional. Anal. i Prilozhen. 21 (1987) 86
,[11] The second bounded cohomology of a group acting on a Gromov-hyperbolic space, Proc. London Math. Soc. $(3)$ 76 (1998) 70
,[12] Some results on bounded cohomology, from: "Combinatorial and geometric group theory (Edinburgh, 1993)", London Math. Soc. Lecture Note Ser. 204, Cambridge Univ. Press (1995) 111
,[13] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[14] Quasi-homomorphisms and stable lengths in mapping class groups, Proc. Amer. Math. Soc. 132 (2004) 3167
,[15] What is \ldots a quasi-morphism?, Notices Amer. Math. Soc. 51 (2004) 208
,[16] Quasi-actions on trees and property (QFA), J. London Math. Soc. $(2)$ 73 (2006) 84
,[17] Degenerations of hyperbolic structures III: Actions of 3–manifold groups on trees and Thurston's compactness theorem, Ann. of Math. $(2)$ 127 (1988) 457
, ,[18] Quasi-actions on trees I: Bounded valence, Ann. of Math. $(2)$ 158 (2003) 115
, , ,[19] Trees, Springer Monographs in Mathematics, Springer (2003)
,[20] A pseudocharacter that is determined by the Rademacher symbol, Uspekhi Mat. Nauk 45 (1990) 197
,[21] Geometryy and topology of three-manifolds, lecture notes, MSRI (1979)
,[22] A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics 8, Interscience Publishers, New York-London (1960)
,Cité par Sources :