Geometry of pseudocharacters
Geometry & topology, Tome 9 (2005) no. 2, pp. 1147-1185.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

If G is a group, a pseudocharacter f : G is a function which is “almost” a homomorphism. If G admits a nontrivial pseudocharacter f, we define the space of ends of G relative to f and show that if the space of ends is complicated enough, then G contains a nonabelian free group. We also construct a quasi-action by G on a tree whose space of ends contains the space of ends of G relative to f. This construction gives rise to examples of “exotic” quasi-actions on trees.

DOI : 10.2140/gt.2005.9.1147
Keywords: pseudocharacter, quasi-action, tree, bounded cohomology

Manning, Jason Fox 1

1 Mathematics 253–37, California Institute of Technology, Pasadena, California 91125, USA
@article{GT_2005_9_2_a10,
     author = {Manning, Jason Fox},
     title = {Geometry of pseudocharacters},
     journal = {Geometry & topology},
     pages = {1147--1185},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2005},
     doi = {10.2140/gt.2005.9.1147},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1147/}
}
TY  - JOUR
AU  - Manning, Jason Fox
TI  - Geometry of pseudocharacters
JO  - Geometry & topology
PY  - 2005
SP  - 1147
EP  - 1185
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1147/
DO  - 10.2140/gt.2005.9.1147
ID  - GT_2005_9_2_a10
ER  - 
%0 Journal Article
%A Manning, Jason Fox
%T Geometry of pseudocharacters
%J Geometry & topology
%D 2005
%P 1147-1185
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1147/
%R 10.2140/gt.2005.9.1147
%F GT_2005_9_2_a10
Manning, Jason Fox. Geometry of pseudocharacters. Geometry & topology, Tome 9 (2005) no. 2, pp. 1147-1185. doi : 10.2140/gt.2005.9.1147. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1147/

[1] A Bart, Surface groups in some surgered manifolds, Topology 40 (2001) 197

[2] C Bavard, Longueur stable des commutateurs, Enseign. Math. $(2)$ 37 (1991) 109

[3] M Bestvina, K Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002) 69

[4] S A Bleiler, C D Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996) 809

[5] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1999)

[6] R Brooks, Some remarks on bounded cohomology, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 53

[7] R Brooks, C Series, Bounded cohomology for surface groups, Topology 23 (1984) 29

[8] D Calegari, Bounded cochains on 3–manifolds

[9] D B A Epstein, K Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997) 1275

[10] V A Faĭziev, Pseudocharacters of free products of semigroups, Funktsional. Anal. i Prilozhen. 21 (1987) 86

[11] K Fujiwara, The second bounded cohomology of a group acting on a Gromov-hyperbolic space, Proc. London Math. Soc. $(3)$ 76 (1998) 70

[12] R I Grigorchuk, Some results on bounded cohomology, from: "Combinatorial and geometric group theory (Edinburgh, 1993)", London Math. Soc. Lecture Note Ser. 204, Cambridge Univ. Press (1995) 111

[13] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[14] D Kotschick, Quasi-homomorphisms and stable lengths in mapping class groups, Proc. Amer. Math. Soc. 132 (2004) 3167

[15] D Kotschick, What is \ldots a quasi-morphism?, Notices Amer. Math. Soc. 51 (2004) 208

[16] J F Manning, Quasi-actions on trees and property (QFA), J. London Math. Soc. $(2)$ 73 (2006) 84

[17] J W Morgan, P B Shalen, Degenerations of hyperbolic structures III: Actions of 3–manifold groups on trees and Thurston's compactness theorem, Ann. of Math. $(2)$ 127 (1988) 457

[18] L Mosher, M Sageev, K Whyte, Quasi-actions on trees I: Bounded valence, Ann. of Math. $(2)$ 158 (2003) 115

[19] J P Serre, Trees, Springer Monographs in Mathematics, Springer (2003)

[20] A I Shtern, A pseudocharacter that is determined by the Rademacher symbol, Uspekhi Mat. Nauk 45 (1990) 197

[21] W P Thurston, Geometryy and topology of three-manifolds, lecture notes, MSRI (1979)

[22] S M Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics 8, Interscience Publishers, New York-London (1960)

Cité par Sources :