Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary
Geometry & topology, Tome 9 (2005) no. 2, pp. 1115-1146.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

McLean proved that the moduli space of coassociative deformations of a compact coassociative 4–submanifold C in a G2–manifold (M,φ,g) is a smooth manifold of dimension equal to b+2(C). In this paper, we show that the moduli space of coassociative deformations of a noncompact, asymptotically cylindrical coassociative 4–fold C in an asymptotically cylindrical G2–manifold (M,φ,g) is also a smooth manifold. Its dimension is the dimension of the positive subspace of the image of Hcs2(C, ) in H2(C, ).

DOI : 10.2140/gt.2005.9.1115
Keywords: calibrated geometries, asymptotically cylindrical manifolds, $G_2$–manifolds, coassociative submanifolds, elliptic operators.

Joyce, Dominic 1 ; Salur, Sema 2

1 Lincoln College, University of Oxford, Oxford, OX1 3DR, United Kingdom
2 Department of Mathematics, Northwestern University, Illinois 60208, USA
@article{GT_2005_9_2_a9,
     author = {Joyce, Dominic and Salur, Sema},
     title = {Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary},
     journal = {Geometry & topology},
     pages = {1115--1146},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2005},
     doi = {10.2140/gt.2005.9.1115},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1115/}
}
TY  - JOUR
AU  - Joyce, Dominic
AU  - Salur, Sema
TI  - Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary
JO  - Geometry & topology
PY  - 2005
SP  - 1115
EP  - 1146
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1115/
DO  - 10.2140/gt.2005.9.1115
ID  - GT_2005_9_2_a9
ER  - 
%0 Journal Article
%A Joyce, Dominic
%A Salur, Sema
%T Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary
%J Geometry & topology
%D 2005
%P 1115-1146
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1115/
%R 10.2140/gt.2005.9.1115
%F GT_2005_9_2_a9
Joyce, Dominic; Salur, Sema. Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary. Geometry & topology, Tome 9 (2005) no. 2, pp. 1115-1146. doi : 10.2140/gt.2005.9.1115. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1115/

[1] S Akbulut, S Salur, Calibrated manifolds and gauge theory

[2] R Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986) 661

[3] R L Bryant, S M Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829

[4] J Cheeger, D Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72) 119

[5] R Harvey, H B Lawson Jr., Calibrated geometries, Acta Math. 148 (1982) 47

[6] M Ionel, S Karigiannis, M Min-Oo, Bundle constructions of calibrated submanifolds in $\mathbb{R}^7$ and $\mathbb{R}^8$, Math. Res. Lett. 12 (2005) 493

[7] D D Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press (2000)

[8] D Joyce, Lectures on special Lagrangian geometry, from: "Global theory of minimal surfaces", Clay Math. Proc. 2, Amer. Math. Soc. (2005) 667

[9] D Joyce, Special Lagrangian submanifolds with isolated conical singularities I: Regularity, Ann. Global Anal. Geom. 25 (2004) 201

[10] D Joyce, Special Lagrangian submanifolds with isolated conical singularities II: Moduli spaces, Ann. Global Anal. Geom. 25 (2004) 301

[11] A Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125

[12] N C Leung, Lectures on $G_2$ geometry, IPAM lecture notes (2003)

[13] N C Leung, Topological quantum field theory for Calabi–Yau threefolds and $G_2$–manifolds, from: "Surveys in differential geometry, Vol. VIII (Boston, MA, 2002)", Surv. Differ. Geom., VIII, Int. Press, Somerville, MA (2003) 257

[14] N C Leung, X Wang, Intersection theory of coassociative submanifolds in $G_2$–manifolds and Seiberg–Witten invariants

[15] R Lockhart, Fredholm, Hodge and Liouville theorems on noncompact manifolds, Trans. Amer. Math. Soc. 301 (1987) 1

[16] R B Lockhart, R C Mcowen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 12 (1985) 409

[17] J Lotay, Constructing associative 3–folds by evolution equations, Comm. Anal. Geom. 13 (2005) 999

[18] J Lotay, 2–ruled calibrated 4–folds in $\mathbb{R}^7$ and $\mathbb{R}^8$, J. London Math. Soc. $(2)$ 74 (2006) 219

[19] S P Marshall, Deformations of special Lagrangian submanifolds, DPhil thesis, University of Oxford (2002)

[20] R B Melrose, The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics 4, A K Peters Ltd. (1993)

[21] R B Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, from: "Spectral and scattering theory (Sanda, 1992)", Lecture Notes in Pure and Appl. Math. 161, Dekker (1994) 85

[22] R C Mclean, Deformations of calibrated submanifolds, Comm. Anal. Geom. 6 (1998) 705

[23] C B Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966)

[24] T Pacini, Deformations of asymptotically conical special Lagrangian submanifolds, Pacific J. Math. 215 (2004) 151

[25] S Salur, Asymptotically cylindrical Ricci-flat manifolds, Proc. Amer. Math. Soc. 134 (2006) 3049

[26] S Salur, Deformations of asymptotically cylindrical coassociative submanifolds with moving boundary, in preparation (2005)

Cité par Sources :