Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
McLean proved that the moduli space of coassociative deformations of a compact coassociative 4–submanifold in a –manifold is a smooth manifold of dimension equal to . In this paper, we show that the moduli space of coassociative deformations of a noncompact, asymptotically cylindrical coassociative 4–fold in an asymptotically cylindrical –manifold is also a smooth manifold. Its dimension is the dimension of the positive subspace of the image of in .
Joyce, Dominic 1 ; Salur, Sema 2
@article{GT_2005_9_2_a9, author = {Joyce, Dominic and Salur, Sema}, title = {Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary}, journal = {Geometry & topology}, pages = {1115--1146}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2005}, doi = {10.2140/gt.2005.9.1115}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1115/} }
TY - JOUR AU - Joyce, Dominic AU - Salur, Sema TI - Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary JO - Geometry & topology PY - 2005 SP - 1115 EP - 1146 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1115/ DO - 10.2140/gt.2005.9.1115 ID - GT_2005_9_2_a9 ER -
%0 Journal Article %A Joyce, Dominic %A Salur, Sema %T Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary %J Geometry & topology %D 2005 %P 1115-1146 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1115/ %R 10.2140/gt.2005.9.1115 %F GT_2005_9_2_a9
Joyce, Dominic; Salur, Sema. Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary. Geometry & topology, Tome 9 (2005) no. 2, pp. 1115-1146. doi : 10.2140/gt.2005.9.1115. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1115/
[1] Calibrated manifolds and gauge theory
, ,[2] The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986) 661
,[3] On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829
, ,[4] The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72) 119
, ,[5] Calibrated geometries, Acta Math. 148 (1982) 47
, ,[6] Bundle constructions of calibrated submanifolds in $\mathbb{R}^7$ and $\mathbb{R}^8$, Math. Res. Lett. 12 (2005) 493
, , ,[7] Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press (2000)
,[8] Lectures on special Lagrangian geometry, from: "Global theory of minimal surfaces", Clay Math. Proc. 2, Amer. Math. Soc. (2005) 667
,[9] Special Lagrangian submanifolds with isolated conical singularities I: Regularity, Ann. Global Anal. Geom. 25 (2004) 201
,[10] Special Lagrangian submanifolds with isolated conical singularities II: Moduli spaces, Ann. Global Anal. Geom. 25 (2004) 301
,[11] Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125
,[12] Lectures on $G_2$ geometry, IPAM lecture notes (2003)
,[13] Topological quantum field theory for Calabi–Yau threefolds and $G_2$–manifolds, from: "Surveys in differential geometry, Vol. VIII (Boston, MA, 2002)", Surv. Differ. Geom., VIII, Int. Press, Somerville, MA (2003) 257
,[14] Intersection theory of coassociative submanifolds in $G_2$–manifolds and Seiberg–Witten invariants
, ,[15] Fredholm, Hodge and Liouville theorems on noncompact manifolds, Trans. Amer. Math. Soc. 301 (1987) 1
,[16] Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 12 (1985) 409
, ,[17] Constructing associative 3–folds by evolution equations, Comm. Anal. Geom. 13 (2005) 999
,[18] 2–ruled calibrated 4–folds in $\mathbb{R}^7$ and $\mathbb{R}^8$, J. London Math. Soc. $(2)$ 74 (2006) 219
,[19] Deformations of special Lagrangian submanifolds, DPhil thesis, University of Oxford (2002)
,[20] The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics 4, A K Peters Ltd. (1993)
,[21] Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, from: "Spectral and scattering theory (Sanda, 1992)", Lecture Notes in Pure and Appl. Math. 161, Dekker (1994) 85
,[22] Deformations of calibrated submanifolds, Comm. Anal. Geom. 6 (1998) 705
,[23] Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966)
,[24] Deformations of asymptotically conical special Lagrangian submanifolds, Pacific J. Math. 215 (2004) 151
,[25] Asymptotically cylindrical Ricci-flat manifolds, Proc. Amer. Math. Soc. 134 (2006) 3049
,[26] Deformations of asymptotically cylindrical coassociative submanifolds with moving boundary, in preparation (2005)
,Cité par Sources :