Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider structures analogous to symplectic Lefschetz pencils in the context of a closed 4–manifold equipped with a “near-symplectic” structure (ie, a closed 2–form which is symplectic outside a union of circles where it vanishes transversely). Our main result asserts that, up to blowups, every near-symplectic 4–manifold can be decomposed into (a) two symplectic Lefschetz fibrations over discs, and (b) a fibre bundle over which relates the boundaries of the Lefschetz fibrations to each other via a sequence of fibrewise handle additions taking place in a neighbourhood of the zero set of the 2–form. Conversely, from such a decomposition one can recover a near-symplectic structure.
Auroux, Denis 1 ; Donaldson, Simon K 2 ; Katzarkov, Ludmil 3
@article{GT_2005_9_2_a8, author = {Auroux, Denis and Donaldson, Simon K and Katzarkov, Ludmil}, title = {Singular {Lefschetz} pencils}, journal = {Geometry & topology}, pages = {1043--1114}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2005}, doi = {10.2140/gt.2005.9.1043}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1043/} }
TY - JOUR AU - Auroux, Denis AU - Donaldson, Simon K AU - Katzarkov, Ludmil TI - Singular Lefschetz pencils JO - Geometry & topology PY - 2005 SP - 1043 EP - 1114 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1043/ DO - 10.2140/gt.2005.9.1043 ID - GT_2005_9_2_a8 ER -
Auroux, Denis; Donaldson, Simon K; Katzarkov, Ludmil. Singular Lefschetz pencils. Geometry & topology, Tome 9 (2005) no. 2, pp. 1043-1114. doi : 10.2140/gt.2005.9.1043. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1043/
[1] Symplectic 4–manifolds as branched coverings of $\bold C\bold P^2$, Invent. Math. 139 (2000) 551
,[2] A remark about Donaldson's construction of symplectic submanifolds, J. Symplectic Geom. 1 (2002) 647
,[3] Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666
,[4] Lefschetz fibrations in symplectic geometry, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 309
,[5] Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205
,[6] Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743
, ,[7] Constructing symplectic forms on 4–manifolds which vanish on circles, Geom. Topol. 8 (2004) 743
, ,[8] Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177
,[9] Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004) 629
,[10] Local properties of self-dual harmonic 2–forms on a 4–manifold, J. Reine Angew. Math. 577 (2004) 105
,[11] Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535
,[12] Submanifolds of symplectic manifolds with contact border
,[13] The geometry of the Seiberg–Witten invariants, from: "Surveys in differential geometry, Vol III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 299
,[14] Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms, Geom. Topol. 3 (1999) 167
,[15] Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467
,Cité par Sources :