Singular Lefschetz pencils
Geometry & topology, Tome 9 (2005) no. 2, pp. 1043-1114.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider structures analogous to symplectic Lefschetz pencils in the context of a closed 4–manifold equipped with a “near-symplectic” structure (ie, a closed 2–form which is symplectic outside a union of circles where it vanishes transversely). Our main result asserts that, up to blowups, every near-symplectic 4–manifold (X,ω) can be decomposed into (a) two symplectic Lefschetz fibrations over discs, and (b) a fibre bundle over S1 which relates the boundaries of the Lefschetz fibrations to each other via a sequence of fibrewise handle additions taking place in a neighbourhood of the zero set of the 2–form. Conversely, from such a decomposition one can recover a near-symplectic structure.

DOI : 10.2140/gt.2005.9.1043
Keywords: near-symplectic manifolds, singular Lefschetz pencils

Auroux, Denis 1 ; Donaldson, Simon K 2 ; Katzarkov, Ludmil 3

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2 Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom
3 Department of Mathematics, University of Miami, Coral Gables, Florida 33124, USA, Department of Mathematics, UC Irvine, Irvine, California 92612, USA
@article{GT_2005_9_2_a8,
     author = {Auroux, Denis and Donaldson, Simon K and Katzarkov, Ludmil},
     title = {Singular {Lefschetz} pencils},
     journal = {Geometry & topology},
     pages = {1043--1114},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2005},
     doi = {10.2140/gt.2005.9.1043},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1043/}
}
TY  - JOUR
AU  - Auroux, Denis
AU  - Donaldson, Simon K
AU  - Katzarkov, Ludmil
TI  - Singular Lefschetz pencils
JO  - Geometry & topology
PY  - 2005
SP  - 1043
EP  - 1114
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1043/
DO  - 10.2140/gt.2005.9.1043
ID  - GT_2005_9_2_a8
ER  - 
%0 Journal Article
%A Auroux, Denis
%A Donaldson, Simon K
%A Katzarkov, Ludmil
%T Singular Lefschetz pencils
%J Geometry & topology
%D 2005
%P 1043-1114
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1043/
%R 10.2140/gt.2005.9.1043
%F GT_2005_9_2_a8
Auroux, Denis; Donaldson, Simon K; Katzarkov, Ludmil. Singular Lefschetz pencils. Geometry & topology, Tome 9 (2005) no. 2, pp. 1043-1114. doi : 10.2140/gt.2005.9.1043. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1043/

[1] D Auroux, Symplectic 4–manifolds as branched coverings of $\bold C\bold P^2$, Invent. Math. 139 (2000) 551

[2] D Auroux, A remark about Donaldson's construction of symplectic submanifolds, J. Symplectic Geom. 1 (2002) 647

[3] S K Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666

[4] S K Donaldson, Lefschetz fibrations in symplectic geometry, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 309

[5] S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205

[6] S Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743

[7] D T Gay, R Kirby, Constructing symplectic forms on 4–manifolds which vanish on circles, Geom. Topol. 8 (2004) 743

[8] R E Gompf, Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177

[9] K Honda, Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004) 629

[10] K Honda, Local properties of self-dual harmonic 2–forms on a 4–manifold, J. Reine Angew. Math. 577 (2004) 105

[11] C Lebrun, Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535

[12] F Presas, Submanifolds of symplectic manifolds with contact border

[13] C H Taubes, The geometry of the Seiberg–Witten invariants, from: "Surveys in differential geometry, Vol III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 299

[14] C H Taubes, Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms, Geom. Topol. 3 (1999) 167

[15] W P Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467

Cité par Sources :