Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study moduli spaces of Seiberg–Witten monopoles over Riemannian 4–manifolds with long necks and/or tubular ends. This first part discusses compactness, exponential decay, and transversality. As applications we prove two vanishing theorems for Seiberg–Witten invariants.
Frøyshov, Kim A 1
@article{GT_2005_9_1_a0, author = {Fr{\o}yshov, Kim A}, title = {Monopoles over 4{\textendash}manifolds containing long necks {I}}, journal = {Geometry & topology}, pages = {1--93}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2005}, doi = {10.2140/gt.2005.9.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1/} }
Frøyshov, Kim A. Monopoles over 4–manifolds containing long necks I. Geometry & topology, Tome 9 (2005) no. 1, pp. 1-93. doi : 10.2140/gt.2005.9.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.1/
[1] Sobolev spaces, Pure and Applied Mathematics 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975)
,[2] The index theorem for manifolds with boundary, from: "Seminar on the Atiyah–Singer index theorem" (editor R S Palais), Annals of Mathematics Studies 57, Princeton University Press (1965)
,[3] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[4] Zero sets of solutions to semilinear elliptic systems of first order, Invent. Math. 138 (1999) 183
,[5] A stable cohomotopy refinement of Seiberg–Witten invariants II, Invent. Math. 155 (2004) 21
,[6] Refined Seiberg–Witten invariants, from: "Different faces of geometry", Int. Math. Ser. (N. Y.) 3, Kluwer/Plenum, New York (2004) 1
,[7] A stable cohomotopy refinement of Seiberg–Witten invariants I, Invent. Math. 155 (2004) 1
, ,[8] Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press (1960)
,[9] The Seiberg–Witten equations and 4–manifold topology, Bull. Amer. Math. Soc. $($N.S.$)$ 33 (1996) 45
,[10] Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)
,[11] The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)
, ,[12] Immersed spheres in 4–manifolds and the immersed Thom conjecture, Turkish J. Math. 19 (1995) 145
, ,[13] An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215
,[14] Monopole Floer homology for rational homology 3–spheres, in preparation
,[15] The Seiberg–Witten equations and four-manifolds with boundary, Math. Res. Lett. 3 (1996) 373
,[16] Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics 471, Springer (1975)
,[17] The analysis of linear partial differential operators III, Grundlehren der Mathematischen Wissenschaften, Springer (1985)
,[18] Curvature, connected sums, and Seiberg–Witten theory, Comm. Anal. Geom. 11 (2003) 809
, ,[19] Unique continuation in geometry, Comm. Pure Appl. Math. 41 (1988) 667
,[20] Floer homology for Seiberg–Witten monopoles, book in preparation
, ,[21] The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797
, ,[22] Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457
, , , ,[23] Spin geometry, Princeton Mathematical Series 38, Princeton University Press (1989)
, ,[24] Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 12 (1985) 409
, ,[25] Seiberg–Witten–Floer homology and Heegaard splittings, Internat. J. Math. 7 (1996) 671
,[26] Equivariant Seiberg–Witten Floer homology, Comm. Anal. Geom. 9 (2001) 451
, ,[27] $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)
, ,[28] A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996) 706
, , ,[29] Notes on Seiberg–Witten theory, Graduate Studies in Mathematics 28, American Mathematical Society (2000)
,[30] Removable singularities and a vanishing theorem for Seiberg–Witten invariants, Turkish J. Math. 20 (1996) 61
,[31] Partial differential equations, Texts in Applied Mathematics 23, Springer (1996)
,[32] Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982) 31
,Cité par Sources :