Invariants for Lagrangian tori
Geometry & topology, Tome 8 (2004) no. 2, pp. 947-968.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define an simple invariant λ(T) of an embedded nullhomologous Lagrangian torus and use this invariant to show that many symplectic 4–manifolds have infinitely many pairwise symplectically inequivalent nullhomologous Lagrangian tori. We further show that for a large class of examples that λ(T) is actually a C invariant. In addition, this invariant is used to show that many symplectic 4–manifolds have nontrivial homology classes which are represented by infinitely many pairwise inequivalent Lagrangian tori, a result first proved by S Vidussi for the homotopy K3–surface obtained from knot surgery using the trefoil knot.

DOI : 10.2140/gt.2004.8.947
Keywords: $4$–manifold, Seiberg–Witten invariant, symplectic, Lagrangian

Fintushel, Ronald 1 ; Stern, Ronald J 2

1 Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
2 Department of Mathematics, University of California, Irvine, California 92697, USA
@article{GT_2004_8_2_a13,
     author = {Fintushel, Ronald and Stern, Ronald J},
     title = {Invariants for {Lagrangian} tori},
     journal = {Geometry & topology},
     pages = {947--968},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.947},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.947/}
}
TY  - JOUR
AU  - Fintushel, Ronald
AU  - Stern, Ronald J
TI  - Invariants for Lagrangian tori
JO  - Geometry & topology
PY  - 2004
SP  - 947
EP  - 968
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.947/
DO  - 10.2140/gt.2004.8.947
ID  - GT_2004_8_2_a13
ER  - 
%0 Journal Article
%A Fintushel, Ronald
%A Stern, Ronald J
%T Invariants for Lagrangian tori
%J Geometry & topology
%D 2004
%P 947-968
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.947/
%R 10.2140/gt.2004.8.947
%F GT_2004_8_2_a13
Fintushel, Ronald; Stern, Ronald J. Invariants for Lagrangian tori. Geometry & topology, Tome 8 (2004) no. 2, pp. 947-968. doi : 10.2140/gt.2004.8.947. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.947/

[1] D Auroux, S K Donaldson, L Katzarkov, Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves, Math. Ann. 326 (2003) 185

[2] Y Eliashberg, L Polterovich, New applications of Luttinger’s surgery, Comment. Math. Helv. 69 (1994) 512

[3] T Etgü, B D Park, Non-isotopic symplectic tori in the same homology class, Trans. Amer. Math. Soc. 356 (2004) 3739

[4] R Fintushel, R J Stern, Rational blowdowns of smooth 4–manifolds, J. Differential Geom. 46 (1997) 181

[5] R Fintushel, R J Stern, Knots, links, and 4–manifolds, Invent. Math. 134 (1998) 363

[6] R Fintushel, R J Stern, Nonsymplectic 4–manifolds with one basic class, Pacific J. Math. 194 (2000) 325

[7] R Fintushel, R J Stern, Symplectic surfaces in a fixed homology class, J. Differential Geom. 52 (1999) 203

[8] R Fintushel, R J Stern, Tori in symplectic 4–manifolds, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry (2004) 311

[9] R E Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995) 527

[10] M Hutchings, Y J Lee, Circle-valued Morse theory, Reidemeister torsion, and Seiberg–Witten invariants of 3–manifolds, Topology 38 (1999) 861

[11] T Mark, Torsion, TQFT, and Seiberg–Witten invariants of 3–manifolds, Geom. Topol. 6 (2002) 27

[12] G Meng, C H Taubes, SW = Milnor torsion, Math. Res. Lett. 3 (1996) 661

[13] J W Morgan, T S Mrowka, Z Szabó, Product formulas along T3 for Seiberg–Witten invariants, Math. Res. Lett. 4 (1997) 915

[14] J W Morgan, Z Szabó, C H Taubes, A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996) 706

[15] L Polterovich, New invariants of totally real embedded tori and a problem in Hamiltonian mechanics, from: "Methods of Qualitative Theory and Bifurcation Theory", Gorki (1988)

[16] J R Stallings, Constructions of fibred knots and links, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 55

[17] C H Taubes, The Seiberg–Witten invariants and 4–manifolds with essential tori, Geom. Topol. 5 (2001) 441

[18] V Turaev, Torsions of 3–dimensional manifolds, 208, Birkhäuser Verlag (2002)

[19] S Vidussi, Lagrangian surfaces in a fixed homology class : existence of knotted Lagrangian tori, J. Differential Geom. 74 (2006) 507

[20] A Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971)

Cité par Sources :