Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be the oriented 3–manifold obtained by rational –surgery on a knot . Using the contact Ozsváth–Szabó invariants we prove, for a class of knots containing all the algebraic knots, that carries positive, tight contact structures for every , where is the slice genus of . This implies, in particular, that the Brieskorn spheres and carry tight, positive contact structures. As an application of our main result we show that for each there exists a Seifert fibered rational homology 3–sphere carrying at least pairwise non–isomorphic tight, nonfillable contact structures.
Lisca, Paolo 1 ; Stipsicz, András I 2
@article{GT_2004_8_2_a12, author = {Lisca, Paolo and Stipsicz, Andr\'as I}, title = {Ozsv\'ath{\textendash}Sz\'abo invariants and tight contact three-manifolds {I}}, journal = {Geometry & topology}, pages = {925--945}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2004}, doi = {10.2140/gt.2004.8.925}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.925/} }
TY - JOUR AU - Lisca, Paolo AU - Stipsicz, András I TI - Ozsváth–Szábo invariants and tight contact three-manifolds I JO - Geometry & topology PY - 2004 SP - 925 EP - 945 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.925/ DO - 10.2140/gt.2004.8.925 ID - GT_2004_8_2_a12 ER -
Lisca, Paolo; Stipsicz, András I. Ozsváth–Szábo invariants and tight contact three-manifolds I. Geometry & topology, Tome 8 (2004) no. 2, pp. 925-945. doi : 10.2140/gt.2004.8.925. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.925/
[1] Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87
,[2] Knotted periodic orbits in dynamical systems I : Lorenz’s equations, Topology 22 (1983) 47
, ,[3] Klassifikation der singularitäten algebroider Kurven, Abh. Math. Sem. Hamburg 6 (1928) 8
,[4] Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol. 1 (2001) 153
, ,[5] A Legendrian surgery presentation of contact 3–manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004) 583
, ,[6] Surgery diagrams for contact 3–manifolds, Turkish J. Math. 28 (2004) 41
, , ,[7] An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279
,[8] The Seiberg–Witten equations and 4–manifold topology, Bull. Amer. Math. Soc. (N.S.) 33 (1996) 45
,[9] Topological characterization of Stein manifolds of dimension gt;2, Internat. J. Math. 1 (1990) 29
,[10] Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)", London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45
,[11] Problems in low dimensional contact topology, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 337
, ,[12] On the nonexistence of tight contact structures, Ann. of Math. (2) 153 (2001) 749
, ,[13] Contact geometry, from: "Handbook of differential geometry Vol II", Elsevier/North-Holland, Amsterdam (2006) 315
,[14] Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998) 619
,[15] On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309
,[16] Gauge theory for embedded surfaces I, Topology 32 (1993) 773
, ,[17] Seifert manifolds, plumbing, μ–invariant and orientation reversing maps, from: "Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977)", Lecture Notes in Math. 664, Springer (1978) 163
, ,[18] Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998) 103
,[19] On symplectic fillings of 3–manifolds, from: "Proceedings of 6th Gökova Geometry–Topology Conference" (1999) 151
,[20] An infinite family of tight, not semi-fillable contact three-manifolds, Geom. Topol. 7 (2003) 1055
, ,[21] Seifert fibered contact three-manifolds via surgery, Algebr. Geom. Topol. 4 (2004) 199
, ,[22] Ozsváth–Szabó invariants and tight contact three-manifolds II, J. Differential Geom. 75 (2007) 109
, ,[23] Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737
,[24] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004) 1027
, ,[25] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004) 1159
, ,[26] Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1
, ,[27] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179
, ,[28] Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39
, ,[29] On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281
, ,[30] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615
, ,[31] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311
, ,[32] Knots and links, 7, Publish or Perish (1976)
,[33] The slice genus and the Thurston–Bennequin invariant of a knot, Proc. Amer. Math. Soc. 125 (1997) 3049
,[34] Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241
,Cité par Sources :