Ozsváth–Szábo invariants and tight contact three-manifolds I
Geometry & topology, Tome 8 (2004) no. 2, pp. 925-945.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Sr3(K) be the oriented 3–manifold obtained by rational r–surgery on a knot K S3. Using the contact Ozsváth–Szabó invariants we prove, for a class of knots K containing all the algebraic knots, that Sr3(K) carries positive, tight contact structures for every r2gs(K) 1, where gs(K) is the slice genus of K. This implies, in particular, that the Brieskorn spheres Σ(2,3,4) and Σ(2,3,3) carry tight, positive contact structures. As an application of our main result we show that for each m there exists a Seifert fibered rational homology 3–sphere Mm carrying at least m pairwise non–isomorphic tight, nonfillable contact structures.

DOI : 10.2140/gt.2004.8.925
Keywords: tight, fillable contact structures, Ozsváth–Szabó invariants

Lisca, Paolo 1 ; Stipsicz, András I 2

1 Dipartimento di Matematica, Università di Pisa, I-56127 Pisa, Italy
2 Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda utca 13–15, Hungary
@article{GT_2004_8_2_a12,
     author = {Lisca, Paolo and Stipsicz, Andr\'as I},
     title = {Ozsv\'ath{\textendash}Sz\'abo invariants and tight contact three-manifolds {I}},
     journal = {Geometry & topology},
     pages = {925--945},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.925},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.925/}
}
TY  - JOUR
AU  - Lisca, Paolo
AU  - Stipsicz, András I
TI  - Ozsváth–Szábo invariants and tight contact three-manifolds I
JO  - Geometry & topology
PY  - 2004
SP  - 925
EP  - 945
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.925/
DO  - 10.2140/gt.2004.8.925
ID  - GT_2004_8_2_a12
ER  - 
%0 Journal Article
%A Lisca, Paolo
%A Stipsicz, András I
%T Ozsváth–Szábo invariants and tight contact three-manifolds I
%J Geometry & topology
%D 2004
%P 925-945
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.925/
%R 10.2140/gt.2004.8.925
%F GT_2004_8_2_a12
Lisca, Paolo; Stipsicz, András I. Ozsváth–Szábo invariants and tight contact three-manifolds I. Geometry & topology, Tome 8 (2004) no. 2, pp. 925-945. doi : 10.2140/gt.2004.8.925. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.925/

[1] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87

[2] J S Birman, R F Williams, Knotted periodic orbits in dynamical systems I : Lorenz’s equations, Topology 22 (1983) 47

[3] K Brauner, Klassifikation der singularitäten algebroider Kurven, Abh. Math. Sem. Hamburg 6 (1928) 8

[4] F Ding, H Geiges, Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol. 1 (2001) 153

[5] F Ding, H Geiges, A Legendrian surgery presentation of contact 3–manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004) 583

[6] F Ding, H Geiges, A I Stipsicz, Surgery diagrams for contact 3–manifolds, Turkish J. Math. 28 (2004) 41

[7] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279

[8] S K Donaldson, The Seiberg–Witten equations and 4–manifold topology, Bull. Amer. Math. Soc. (N.S.) 33 (1996) 45

[9] Y Eliashberg, Topological characterization of Stein manifolds of dimension gt;2, Internat. J. Math. 1 (1990) 29

[10] Y Eliashberg, Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)", London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45

[11] J B Etnyre, L L Ng, Problems in low dimensional contact topology, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 337

[12] J B Etnyre, K Honda, On the nonexistence of tight contact structures, Ann. of Math. (2) 153 (2001) 749

[13] H Geiges, Contact geometry, from: "Handbook of differential geometry Vol II", Elsevier/North-Holland, Amsterdam (2006) 315

[14] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998) 619

[15] K Honda, On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309

[16] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces I, Topology 32 (1993) 773

[17] W D Neumann, F Raymond, Seifert manifolds, plumbing, μ–invariant and orientation reversing maps, from: "Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977)", Lecture Notes in Math. 664, Springer (1978) 163

[18] P Lisca, Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998) 103

[19] P Lisca, On symplectic fillings of 3–manifolds, from: "Proceedings of 6th Gökova Geometry–Topology Conference" (1999) 151

[20] P Lisca, A I Stipsicz, An infinite family of tight, not semi-fillable contact three-manifolds, Geom. Topol. 7 (2003) 1055

[21] P Lisca, A I Stipsicz, Seifert fibered contact three-manifolds via surgery, Algebr. Geom. Topol. 4 (2004) 199

[22] P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact three-manifolds II, J. Differential Geom. 75 (2007) 109

[23] L Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737

[24] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004) 1027

[25] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004) 1159

[26] P Ozsváth, Z Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1

[27] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[28] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39

[29] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281

[30] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615

[31] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[32] D Rolfsen, Knots and links, 7, Publish or Perish (1976)

[33] L Rudolph, The slice genus and the Thurston–Bennequin invariant of a knot, Proc. Amer. Math. Soc. 125 (1997) 3049

[34] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241

Cité par Sources :