Global rigidity of solvable group actions on S1
Geometry & topology, Tome 8 (2004) no. 2, pp. 877-924.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper we find all solvable subgroups of Diffω(S1) and classify their actions. We also investigate the Cr local rigidity of actions of the solvable Baumslag–Solitar groups on the circle.

The investigation leads to two novel phenomena in the study of infinite group actions on compact manifolds. We exhibit a finitely generated group Γ and a manifold M such that

(i) Γ has exactly countably infinitely many effective real-analytic actions on M, up to conjugacy in Diffω(M);

(ii) every effective, real analytic action of Γ on M is Cr locally rigid, for some r 3, and for every such r, there are infinitely many nonconjugate, effective real-analytic actions of Γ on M that are Cr locally rigid, but not Cr1 locally rigid.

DOI : 10.2140/gt.2004.8.877
Keywords: group action, solvable group, rigidity, $\mathrm{Diff}^{\omega}(S^1)$

Burslem, Lizzie 1 ; Wilkinson, Amie 2

1 Department of Mathematics, University of Michigan, 2074 East Hall, Ann Arbor, Michigan 48109-1109 USA
2 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208-2730 USA
@article{GT_2004_8_2_a11,
     author = {Burslem, Lizzie and Wilkinson, Amie},
     title = {Global rigidity of solvable group actions on {S1}},
     journal = {Geometry & topology},
     pages = {877--924},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.877},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.877/}
}
TY  - JOUR
AU  - Burslem, Lizzie
AU  - Wilkinson, Amie
TI  - Global rigidity of solvable group actions on S1
JO  - Geometry & topology
PY  - 2004
SP  - 877
EP  - 924
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.877/
DO  - 10.2140/gt.2004.8.877
ID  - GT_2004_8_2_a11
ER  - 
%0 Journal Article
%A Burslem, Lizzie
%A Wilkinson, Amie
%T Global rigidity of solvable group actions on S1
%J Geometry & topology
%D 2004
%P 877-924
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.877/
%R 10.2140/gt.2004.8.877
%F GT_2004_8_2_a11
Burslem, Lizzie; Wilkinson, Amie. Global rigidity of solvable group actions on S1. Geometry & topology, Tome 8 (2004) no. 2, pp. 877-924. doi : 10.2140/gt.2004.8.877. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.877/

[1] D Cerveau, R Moussu, Groupes d’automorphismes de (C,0) et équations différentielles ydy + ⋯ = 0, Bull. Soc. Math. France 116 (1988)

[2] P M Elizarov, Y S Il’Yashenko, A A Shcherbakov, S M Voronin, Finitely generated groups of germs of one-dimensional conformal mappings, and invariants for complex singular points of analytic foliations of the complex plane, from: "Nonlinear Stokes phenomena", Adv. Soviet Math. 14, Amer. Math. Soc. (1993) 57

[3] B Farb, J Franks, Groups of homeomorphisms of one-manifolds I: actions of nonlinear groups, preprint

[4] B Farb, L Mosher, On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000) 145

[5] B Farb, P Shalen, Groups of real-analytic diffeomorphisms of the circle, Ergodic Theory Dynam. Systems 22 (2002) 835

[6] É Ghys, Sur les groupes engendrés par des difféomorphismes proches de l’identité, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993) 137

[7] É Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (2001) 329

[8] N Kopell, Commuting diffeomorphisms, from: "Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)", Amer. Math. Soc. (1970) 165

[9] F Labourie, Large groups actions on manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 371

[10] I Nakai, Separatrices for nonsolvable dynamics on C,0, Ann. Inst. Fourier (Grenoble) 44 (1994) 569

[11] A Navas, Groupes résolubles de difféomorphismes de l’intervalle, du cercle et de la droite, Bull. Braz. Math. Soc. (N.S.) 35 (2004) 13

[12] J F Plante, W P Thurston, Polynomial growth in holonomy groups of foliations, Comment. Math. Helv. 51 (1976) 567

[13] J C Rebelo, R R Silva, The multiple ergodicity of nondiscrete subgroups of Diffω(S1), Mosc. Math. J. 3 (2003) 123, 259

[14] S Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math. 79 (1957) 809

[15] F Takens, Normal forms for certain singularities of vectorfields, Ann. Inst. Fourier (Grenoble) 23 (1973) 163

[16] M Zhang, W Li, Embedding flows and smooth conjugacy, Chinese Ann. Math. Ser. B 18 (1997) 125

Cité par Sources :