Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper we find all solvable subgroups of and classify their actions. We also investigate the local rigidity of actions of the solvable Baumslag–Solitar groups on the circle.
The investigation leads to two novel phenomena in the study of infinite group actions on compact manifolds. We exhibit a finitely generated group and a manifold such that
(i) has exactly countably infinitely many effective real-analytic actions on , up to conjugacy in ;
(ii) every effective, real analytic action of on is locally rigid, for some , and for every such , there are infinitely many nonconjugate, effective real-analytic actions of on that are locally rigid, but not locally rigid.
Burslem, Lizzie 1 ; Wilkinson, Amie 2
@article{GT_2004_8_2_a11, author = {Burslem, Lizzie and Wilkinson, Amie}, title = {Global rigidity of solvable group actions on {S1}}, journal = {Geometry & topology}, pages = {877--924}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2004}, doi = {10.2140/gt.2004.8.877}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.877/} }
TY - JOUR AU - Burslem, Lizzie AU - Wilkinson, Amie TI - Global rigidity of solvable group actions on S1 JO - Geometry & topology PY - 2004 SP - 877 EP - 924 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.877/ DO - 10.2140/gt.2004.8.877 ID - GT_2004_8_2_a11 ER -
Burslem, Lizzie; Wilkinson, Amie. Global rigidity of solvable group actions on S1. Geometry & topology, Tome 8 (2004) no. 2, pp. 877-924. doi : 10.2140/gt.2004.8.877. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.877/
[1] Groupes d’automorphismes de (C,0) et équations différentielles ydy + ⋯ = 0, Bull. Soc. Math. France 116 (1988)
, ,[2] Finitely generated groups of germs of one-dimensional conformal mappings, and invariants for complex singular points of analytic foliations of the complex plane, from: "Nonlinear Stokes phenomena", Adv. Soviet Math. 14, Amer. Math. Soc. (1993) 57
, , , ,[3] Groups of homeomorphisms of one-manifolds I: actions of nonlinear groups, preprint
, ,[4] On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000) 145
, ,[5] Groups of real-analytic diffeomorphisms of the circle, Ergodic Theory Dynam. Systems 22 (2002) 835
, ,[6] Sur les groupes engendrés par des difféomorphismes proches de l’identité, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993) 137
,[7] Groups acting on the circle, Enseign. Math. (2) 47 (2001) 329
,[8] Commuting diffeomorphisms, from: "Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)", Amer. Math. Soc. (1970) 165
,[9] Large groups actions on manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 371
,[10] Separatrices for nonsolvable dynamics on C,0, Ann. Inst. Fourier (Grenoble) 44 (1994) 569
,[11] Groupes résolubles de difféomorphismes de l’intervalle, du cercle et de la droite, Bull. Braz. Math. Soc. (N.S.) 35 (2004) 13
,[12] Polynomial growth in holonomy groups of foliations, Comment. Math. Helv. 51 (1976) 567
, ,[13] The multiple ergodicity of nondiscrete subgroups of Diffω(S1), Mosc. Math. J. 3 (2003) 123, 259
, ,[14] Local contractions and a theorem of Poincaré, Amer. J. Math. 79 (1957) 809
,[15] Normal forms for certain singularities of vectorfields, Ann. Inst. Fourier (Grenoble) 23 (1973) 163
,[16] Embedding flows and smooth conjugacy, Chinese Ann. Math. Ser. B 18 (1997) 125
, ,Cité par Sources :