The disjoint curve property
Geometry & topology, Tome 8 (2004) no. 1, pp. 77-113.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A Heegaard splitting of a closed, orientable three-manifold satisfies the disjoint curve property if the splitting surface contains an essential simple closed curve and each handlebody contains an essential disk disjoint from this curve. A splitting is full if it does not have the disjoint curve property. This paper shows that in a closed, orientable three-manifold all splittings of sufficiently large genus have the disjoint curve property. From this and a solution to the generalized Waldhausen conjecture it would follow that any closed, orientable three manifold contains only finitely many full splittings.

DOI : 10.2140/gt.2004.8.77
Keywords: Heegaard splittings, disjoint curve property, Waldhausen Conjecture

Schleimer, Saul 1

1 Department of Mathematics, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, USA
@article{GT_2004_8_1_a2,
     author = {Schleimer, Saul},
     title = {The disjoint curve property},
     journal = {Geometry & topology},
     pages = {77--113},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     doi = {10.2140/gt.2004.8.77},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.77/}
}
TY  - JOUR
AU  - Schleimer, Saul
TI  - The disjoint curve property
JO  - Geometry & topology
PY  - 2004
SP  - 77
EP  - 113
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.77/
DO  - 10.2140/gt.2004.8.77
ID  - GT_2004_8_1_a2
ER  - 
%0 Journal Article
%A Schleimer, Saul
%T The disjoint curve property
%J Geometry & topology
%D 2004
%P 77-113
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.77/
%R 10.2140/gt.2004.8.77
%F GT_2004_8_1_a2
Schleimer, Saul. The disjoint curve property. Geometry & topology, Tome 8 (2004) no. 1, pp. 77-113. doi : 10.2140/gt.2004.8.77. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.77/

[1] F Bonahon, J P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. $(4)$ 16 (1983)

[2] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275

[3] W Haken, Some results on surfaces in 3–manifolds, from: "Studies in Modern Topology", Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.) (1968) 39

[4] J Hass, J C Lagarias, N Pippenger, The computational complexity of knot and link problems, J. ACM 46 (1999) 185

[5] J Hempel, 3–manifolds as viewed from the curve complex, Topology 40 (2001) 631

[6] W Jaco, personal communication

[7] W Jaco, U Oertel, An algorithm to decide if a 3–manifold is a Haken manifold, Topology 23 (1984) 195

[8] W Jaco, J L Tollefson, Algorithms for the complete decomposition of a closed 3–manifold, Illinois J. Math. 39 (1995) 358

[9] T Kobayashi, Casson–Gordon's rectangle condition of Heegaard diagrams and incompressible tori in 3–manifolds, Osaka J. Math. 25 (1988) 553

[10] T Kobayashi, Heights of simple loops and pseudo–Anosov homeomorphisms, from: "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78, Amer. Math. Soc. (1988) 327

[11] T Kobayashi, A construction of 3–manifolds whose homeomorphism classes of Heegaard splittings have polynomial growth, Osaka J. Math. 29 (1992) 653

[12] T Kobayashi, Heegaard splittings of exteriors of two bridge knots, Geom. Topol. 5 (2001) 609

[13] F Luo, Heegaard diagrams and handlebody groups, Topology Appl. 129 (2003) 111

[14] Y Moriah, J Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal, Topology 37 (1998) 1089

[15] Y Rieck, E Sedgwick, Finiteness results for Heegaard surfaces in surgered manifolds, Comm. Anal. Geom. 9 (2001) 351

[16] J H Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3–dimensional manifolds, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1

[17] M Scharlemann, Local detection of strongly irreducible Heegaard splittings, Topology Appl. 90 (1998) 135

[18] M Scharlemann, Heegaard splittings of compact 3–manifolds, from: "Handbook of geometric topology", North-Holland (2002) 921

[19] E Sedgwick, An infinite collection of Heegaard splittings that are equivalent after one stabilization, Math. Ann. 308 (1997) 65

[20] M Stocking, Almost normal surfaces in 3–manifolds, Trans. Amer. Math. Soc. 352 (2000) 171

[21] A Thompson, The disjoint curve property and genus 2 manifolds, Topology Appl. 97 (1999) 273

[22] F Waldhausen, Heegaard–Zerlegungen der 3–Sphäre, Topology 7 (1968) 195

Cité par Sources :