Constructing symplectic forms on 4–manifolds which vanish on circles
Geometry & topology, Tome 8 (2004) no. 2, pp. 743-777.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a smooth, closed, oriented 4–manifold X and α H2(X, ) such that α α > 0, a closed 2–form is constructed, Poincaré dual to α, which is symplectic on the complement of a finite set of unknotted circles Z. The number of circles, counted with sign, is given by d =(c1(s)2 3σ(X) 2χ(X))4, where s is a certain spin structure naturally associated to ω.

DOI : 10.2140/gt.2004.8.743
Keywords: symplectic, $4$–manifold, $\mathrm{spin}^C$, almost complex, harmonic

Gay, David T 1 ; Kirby, Robion 2

1 CIRGET, Université du Québec à Montréal, Case Postale 8888, Succursale centre-ville, Montréal, Quebec H3C 3P8, Canada
2 Department of Mathematics, University of California, Berkeley, California 94720, USA
@article{GT_2004_8_2_a8,
     author = {Gay, David T and Kirby, Robion},
     title = {Constructing symplectic forms on 4{\textendash}manifolds which vanish on circles},
     journal = {Geometry & topology},
     pages = {743--777},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.743},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.743/}
}
TY  - JOUR
AU  - Gay, David T
AU  - Kirby, Robion
TI  - Constructing symplectic forms on 4–manifolds which vanish on circles
JO  - Geometry & topology
PY  - 2004
SP  - 743
EP  - 777
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.743/
DO  - 10.2140/gt.2004.8.743
ID  - GT_2004_8_2_a8
ER  - 
%0 Journal Article
%A Gay, David T
%A Kirby, Robion
%T Constructing symplectic forms on 4–manifolds which vanish on circles
%J Geometry & topology
%D 2004
%P 743-777
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.743/
%R 10.2140/gt.2004.8.743
%F GT_2004_8_2_a8
Gay, David T; Kirby, Robion. Constructing symplectic forms on 4–manifolds which vanish on circles. Geometry & topology, Tome 8 (2004) no. 2, pp. 743-777. doi : 10.2140/gt.2004.8.743. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.743/

[1] C Bohr, Embedded surfaces and almost complex structures, Proc. Amer. Math. Soc. 128 (2000) 2147

[2] F Ding, H Geiges, A Legendrian surgery presentation of contact 3–manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004) 583

[3] F Ding, H Geiges, A I Stipsicz, Surgery diagrams for contact 3–manifolds, Turkish J. Math. 28 (2004) 41

[4] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623

[5] Y Eliashberg, Topological characterization of Stein manifolds of dimension gt;2, Internat. J. Math. 1 (1990) 29

[6] D T Gay, Explicit concave fillings of contact three-manifolds, Math. Proc. Cambridge Philos. Soc. 133 (2002) 431

[7] D T Gay, Open books and configurations of symplectic surfaces, Algebr. Geom. Topol. 3 (2003) 569

[8] N Goodman, Contact structures and open books, PhD thesis, University of Texas, Austin (2003)

[9] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998) 619

[10] R E Gompf, Spinc–structures and homotopy equivalences, Geom. Topol. 1 (1997) 41

[11] F Hirzebruch, H Hopf, Felder von Flächenelementen in 4–dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958) 156

[12] K Honda, An openness theorem for harmonic 2–forms on 4–manifolds, Illinois J. Math. 44 (2000) 479

[13] K Honda, Local properties of self-dual harmonic 2–forms on a 4–manifold, J. Reine Angew. Math. 577 (2004) 105

[14] K Honda, On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309

[15] G Mikhalkin, J–holomorphic curves in almost complex surfaces do not always minimize the genus, Proc. Amer. Math. Soc. 125 (1997) 1831

[16] R Scott, Closed self-dual two-forms on four-dimensional handlebodies, PhD thesis, Harvard University (2003)

[17] C H Taubes, The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on S1 × B3, Geom. Topol. 2 (1998) 221

[18] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241

Cité par Sources :