Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a smooth, closed, oriented 4–manifold and such that , a closed –form is constructed, Poincaré dual to , which is symplectic on the complement of a finite set of unknotted circles . The number of circles, counted with sign, is given by , where is a certain structure naturally associated to .
Gay, David T 1 ; Kirby, Robion 2
@article{GT_2004_8_2_a8, author = {Gay, David T and Kirby, Robion}, title = {Constructing symplectic forms on 4{\textendash}manifolds which vanish on circles}, journal = {Geometry & topology}, pages = {743--777}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2004}, doi = {10.2140/gt.2004.8.743}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.743/} }
TY - JOUR AU - Gay, David T AU - Kirby, Robion TI - Constructing symplectic forms on 4–manifolds which vanish on circles JO - Geometry & topology PY - 2004 SP - 743 EP - 777 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.743/ DO - 10.2140/gt.2004.8.743 ID - GT_2004_8_2_a8 ER -
Gay, David T; Kirby, Robion. Constructing symplectic forms on 4–manifolds which vanish on circles. Geometry & topology, Tome 8 (2004) no. 2, pp. 743-777. doi : 10.2140/gt.2004.8.743. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.743/
[1] Embedded surfaces and almost complex structures, Proc. Amer. Math. Soc. 128 (2000) 2147
,[2] A Legendrian surgery presentation of contact 3–manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004) 583
, ,[3] Surgery diagrams for contact 3–manifolds, Turkish J. Math. 28 (2004) 41
, , ,[4] Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623
,[5] Topological characterization of Stein manifolds of dimension gt;2, Internat. J. Math. 1 (1990) 29
,[6] Explicit concave fillings of contact three-manifolds, Math. Proc. Cambridge Philos. Soc. 133 (2002) 431
,[7] Open books and configurations of symplectic surfaces, Algebr. Geom. Topol. 3 (2003) 569
,[8] Contact structures and open books, PhD thesis, University of Texas, Austin (2003)
,[9] Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998) 619
,[10] Spinc–structures and homotopy equivalences, Geom. Topol. 1 (1997) 41
,[11] Felder von Flächenelementen in 4–dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958) 156
, ,[12] An openness theorem for harmonic 2–forms on 4–manifolds, Illinois J. Math. 44 (2000) 479
,[13] Local properties of self-dual harmonic 2–forms on a 4–manifold, J. Reine Angew. Math. 577 (2004) 105
,[14] On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309
,[15] J–holomorphic curves in almost complex surfaces do not always minimize the genus, Proc. Amer. Math. Soc. 125 (1997) 1831
,[16] Closed self-dual two-forms on four-dimensional handlebodies, PhD thesis, Harvard University (2003)
,[17] The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on S1 × B3, Geom. Topol. 2 (1998) 221
,[18] Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241
,Cité par Sources :