Computations of the Ozsváth–Szabó knot concordance invariant
Geometry & topology, Tome 8 (2004) no. 2, pp. 735-742.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Ozsváth and Szabó have defined a knot concordance invariant τ that bounds the 4–ball genus of a knot. Here we discuss shortcuts to its computation. We include examples of Alexander polynomial one knots for which the invariant is nontrivial, including all iterated untwisted positive doubles of knots with nonnegative Thurston–Bennequin number, such as the trefoil, and explicit computations for several 10 crossing knots. We also note that a new proof of the Slice–Bennequin Inequality quickly follows from these techniques.

DOI : 10.2140/gt.2004.8.735
Keywords: concordance, knot genus, Slice–Bennequin Inequality

Livingston, Charles 1

1 Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA
@article{GT_2004_8_2_a7,
     author = {Livingston, Charles},
     title = {Computations of the {Ozsv\'ath{\textendash}Szab\'o} knot concordance invariant},
     journal = {Geometry & topology},
     pages = {735--742},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.735},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.735/}
}
TY  - JOUR
AU  - Livingston, Charles
TI  - Computations of the Ozsváth–Szabó knot concordance invariant
JO  - Geometry & topology
PY  - 2004
SP  - 735
EP  - 742
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.735/
DO  - 10.2140/gt.2004.8.735
ID  - GT_2004_8_2_a7
ER  - 
%0 Journal Article
%A Livingston, Charles
%T Computations of the Ozsváth–Szabó knot concordance invariant
%J Geometry & topology
%D 2004
%P 735-742
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.735/
%R 10.2140/gt.2004.8.735
%F GT_2004_8_2_a7
Livingston, Charles. Computations of the Ozsváth–Szabó knot concordance invariant. Geometry & topology, Tome 8 (2004) no. 2, pp. 735-742. doi : 10.2140/gt.2004.8.735. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.735/

[1] S Akbulut, R Matveyev, Exotic structures and adjunction inequality, Turkish J. Math. 21 (1997) 47

[2] T Kawamura, The unknotting numbers of 10139 and 10152 are 4, Osaka J. Math. 35 (1998) 539

[3] A Kawauchi, A survey of knot theory, Birkhäuser Verlag (1996)

[4] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces I, Topology 32 (1993) 773

[5] C Livingston, Splitting the concordance group of algebraically slice knots, Geom. Topol. 7 (2003) 641

[6] B Owens, S Strle, Definite manifolds bounded by rational homology three spheres, from: "Geometry and topology of manifolds", Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 243

[7] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615

[8] O Plamenevskaya, Bounds for the Thurston–Bennequin number from Floer homology, Algebr. Geom. Topol. 4 (2004) 399

[9] J A Rasmussen, Knot Floer homology, genus bounds and mutation, PhD thesis, Harvard University (2003)

[10] J A Rasmussen, Floer homology of surgeries on two-bridge knots, Algebr. Geom. Topol. 2 (2002) 757

[11] D Rolfsen, Knots and links, 7, Publish or Perish (1990)

[12] L Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993) 51

[13] L Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155

[14] L Rudolph, Quasipositive pretzels, Topology Appl. 115 (2001) 115

[15] T Shibuya, Local moves and 4–genus of knots, Mem. Osaka Inst. Tech. Ser. A 45 (2000) 1

[16] T Tanaka, Unknotting numbers of quasipositive knots, Topology Appl. 88 (1998) 239

Cité par Sources :