Hodge integrals and invariants of the unknot
Geometry & topology, Tome 8 (2004) no. 2, pp. 675-699.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the Gopakumar–Mariño–Vafa formula for special cubic Hodge integrals. The GMV formula arises from Chern–Simons/string duality applied to the unknot in the three sphere. The GMV formula is a q–analog of the ELSV formula for linear Hodge integrals. We find a system of bilinear localization equations relating linear and special cubic Hodge integrals. The GMV formula then follows easily from the ELSV formula. An operator form of the GMV formula is presented in the last section of the paper.

DOI : 10.2140/gt.2004.8.675
Keywords: Hodge integrals, unknot, Gopakumar–Mariño–Vafa formula

Okounkov, Andrei 1 ; Pandharipande, Rahul 1

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
@article{GT_2004_8_2_a5,
     author = {Okounkov, Andrei and Pandharipande, Rahul},
     title = {Hodge integrals and invariants of the unknot},
     journal = {Geometry & topology},
     pages = {675--699},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.675},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.675/}
}
TY  - JOUR
AU  - Okounkov, Andrei
AU  - Pandharipande, Rahul
TI  - Hodge integrals and invariants of the unknot
JO  - Geometry & topology
PY  - 2004
SP  - 675
EP  - 699
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.675/
DO  - 10.2140/gt.2004.8.675
ID  - GT_2004_8_2_a5
ER  - 
%0 Journal Article
%A Okounkov, Andrei
%A Pandharipande, Rahul
%T Hodge integrals and invariants of the unknot
%J Geometry & topology
%D 2004
%P 675-699
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.675/
%R 10.2140/gt.2004.8.675
%F GT_2004_8_2_a5
Okounkov, Andrei; Pandharipande, Rahul. Hodge integrals and invariants of the unknot. Geometry & topology, Tome 8 (2004) no. 2, pp. 675-699. doi : 10.2140/gt.2004.8.675. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.675/

[1] P Biane, Minimal factorizations of a cycle and central multiplicative functions on the infinite symmetric group, J. Combin. Theory Ser. A 76 (1996) 197

[2] T Ekedahl, S Lando, M Shapiro, A Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001) 297

[3] L Euler, De serie Lambertiana, Opera Omnia, Serie 1 Bd 6, S 354, B G Teubner, Leipzig–Berlin (1921)

[4] C Faber, Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians, from: "New trends in algebraic geometry (Warwick, 1996)", London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press (1999) 93

[5] C Faber, R Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173

[6] C Faber, R Pandharipande, Hodge integrals, partition matrices, and the λg conjecture, Ann. of Math. (2) 157 (2003) 97

[7] R Gopakumar, C Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415

[8] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487

[9] C Kassel, M Rosso, V Turaev, Quantum groups and knot invariants, 5, Société Mathématique de France (1997)

[10] S Katz, C C M Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys. 5 (2001) 1

[11] C C M Liu, K Liu, J Zhou, On a proof of a conjecture of Mariño–Vafa on Hodge integrals, Math. Res. Lett. 11 (2004) 259

[12] C C M Liu, K Liu, J Zhou, A proof of a conjecture of Mariño–Vafa on Hodge integrals, J. Differential Geom. 65 (2003) 289

[13] C C M Liu, K Liu, J Zhou, Mariño–Vafa formula and Hodge integral identities, J. Algebraic Geom. 15 (2006) 379

[14] I G Macdonald, Symmetric functions and Hall polynomials, , The Clarendon Press Oxford University Press (1995)

[15] M Mariño, Enumerative geometry and knot invariants, from: "Infinite dimensional groups and manifolds", IRMA Lect. Math. Theor. Phys. 5, de Gruyter (2004) 27

[16] M Mariño, C Vafa, Framed knots at large N, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)", Contemp. Math. 310, Amer. Math. Soc. (2002) 185

[17] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz numbers and matrix models I

[18] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006) 517

[19] A Okounkov, R Pandharipande, The equivariant Gromov–Witten theory of P1, Ann. of Math. (2) 163 (2006) 561

[20] G Pólya, G Szegö, Aufgaben und Lehrsätze aus der Analysis, Dover Publications, New York, N. Y. (1945)

[21] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, Vol II", Progr. Math. 36, Birkhäuser (1983) 271

Cité par Sources :