Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove the Gopakumar–Mariño–Vafa formula for special cubic Hodge integrals. The GMV formula arises from Chern–Simons/string duality applied to the unknot in the three sphere. The GMV formula is a –analog of the ELSV formula for linear Hodge integrals. We find a system of bilinear localization equations relating linear and special cubic Hodge integrals. The GMV formula then follows easily from the ELSV formula. An operator form of the GMV formula is presented in the last section of the paper.
Okounkov, Andrei 1 ; Pandharipande, Rahul 1
@article{GT_2004_8_2_a5, author = {Okounkov, Andrei and Pandharipande, Rahul}, title = {Hodge integrals and invariants of the unknot}, journal = {Geometry & topology}, pages = {675--699}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2004}, doi = {10.2140/gt.2004.8.675}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.675/} }
TY - JOUR AU - Okounkov, Andrei AU - Pandharipande, Rahul TI - Hodge integrals and invariants of the unknot JO - Geometry & topology PY - 2004 SP - 675 EP - 699 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.675/ DO - 10.2140/gt.2004.8.675 ID - GT_2004_8_2_a5 ER -
Okounkov, Andrei; Pandharipande, Rahul. Hodge integrals and invariants of the unknot. Geometry & topology, Tome 8 (2004) no. 2, pp. 675-699. doi : 10.2140/gt.2004.8.675. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.675/
[1] Minimal factorizations of a cycle and central multiplicative functions on the infinite symmetric group, J. Combin. Theory Ser. A 76 (1996) 197
,[2] Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001) 297
, , , ,[3] De serie Lambertiana, Opera Omnia, Serie 1 Bd 6, S 354, B G Teubner, Leipzig–Berlin (1921)
,[4] Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians, from: "New trends in algebraic geometry (Warwick, 1996)", London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press (1999) 93
,[5] Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173
, ,[6] Hodge integrals, partition matrices, and the λg conjecture, Ann. of Math. (2) 157 (2003) 97
, ,[7] On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415
, ,[8] Localization of virtual classes, Invent. Math. 135 (1999) 487
, ,[9] Quantum groups and knot invariants, 5, Société Mathématique de France (1997)
, , ,[10] Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys. 5 (2001) 1
, ,[11] On a proof of a conjecture of Mariño–Vafa on Hodge integrals, Math. Res. Lett. 11 (2004) 259
, , ,[12] A proof of a conjecture of Mariño–Vafa on Hodge integrals, J. Differential Geom. 65 (2003) 289
, , ,[13] Mariño–Vafa formula and Hodge integral identities, J. Algebraic Geom. 15 (2006) 379
, , ,[14] Symmetric functions and Hall polynomials, , The Clarendon Press Oxford University Press (1995)
,[15] Enumerative geometry and knot invariants, from: "Infinite dimensional groups and manifolds", IRMA Lect. Math. Theor. Phys. 5, de Gruyter (2004) 27
,[16] Framed knots at large N, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)", Contemp. Math. 310, Amer. Math. Soc. (2002) 185
, ,[17] Gromov–Witten theory, Hurwitz numbers and matrix models I
, ,[18] Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006) 517
, ,[19] The equivariant Gromov–Witten theory of P1, Ann. of Math. (2) 163 (2006) 561
, ,[20] Aufgaben und Lehrsätze aus der Analysis, Dover Publications, New York, N. Y. (1945)
, ,[21] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, Vol II", Progr. Math. 36, Birkhäuser (1983) 271
,Cité par Sources :