Units of ring spectra and their traces in algebraic K–theory
Geometry & topology, Tome 8 (2004) no. 2, pp. 645-673.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let GL1(R) be the units of a commutative ring spectrum R. In this paper we identify the composition

where K(R) is the algebraic K–theory and THH(R) the topological Hochschild homology of R. As a corollary we show that classes in πi1R not annihilated by the stable Hopf map η π1s(S0) give rise to non-trivial classes in Ki(R) for i 3.

DOI : 10.2140/gt.2004.8.645
Keywords: ring spectra, algebraic K-theory, topological Hochschild homology

Schlichtkrull, Christian 1

1 Department of Mathematics, Oslo University, PO Box 1053, Blindern, NO-0316 Oslo, Norway
@article{GT_2004_8_2_a4,
     author = {Schlichtkrull, Christian},
     title = {Units of ring spectra and their traces in algebraic {K{\textendash}theory}},
     journal = {Geometry & topology},
     pages = {645--673},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.645},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.645/}
}
TY  - JOUR
AU  - Schlichtkrull, Christian
TI  - Units of ring spectra and their traces in algebraic K–theory
JO  - Geometry & topology
PY  - 2004
SP  - 645
EP  - 673
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.645/
DO  - 10.2140/gt.2004.8.645
ID  - GT_2004_8_2_a4
ER  - 
%0 Journal Article
%A Schlichtkrull, Christian
%T Units of ring spectra and their traces in algebraic K–theory
%J Geometry & topology
%D 2004
%P 645-673
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.645/
%R 10.2140/gt.2004.8.645
%F GT_2004_8_2_a4
Schlichtkrull, Christian. Units of ring spectra and their traces in algebraic K–theory. Geometry & topology, Tome 8 (2004) no. 2, pp. 645-673. doi : 10.2140/gt.2004.8.645. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.645/

[1] C Ausoni, J Rognes, Algebraic K–theory of topological K–theory, Acta Math. 188 (2002) 1

[2] N A Baas, B I Dundas, J Rognes, Two-vector bundles and forms of elliptic cohomology, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 18

[3] M G Barratt, P J Eccles, Γ+–structures I : A free group functor for stable homotopy theory, Topology 13 (1974) 25

[4] A K Bousfield, E M Friedlander, Homotopy theory of Γ–spaces, spectra, and bisimplicial sets, from: "Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II", Lecture Notes in Math. 658, Springer (1978) 80

[5] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, 304, Springer (1972)

[6] M Bökstedt, Topological Hochschild homology, preprint (1985)

[7] M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic K–theory of spaces, Invent. Math. 111 (1993) 465

[8] M Bökstedt, F Waldhausen, The map BSG→A(∗)→QS0, from: "Algebraic topology and algebraic K–theory (Princeton, N.J., 1983)", Ann. of Math. Stud. 113, Princeton Univ. Press (1987) 418

[9] M Brun, Topological Hochschild homology of Z∕pn, J. Pure Appl. Algebra 148 (2000) 29

[10] B I Dundas, The cyclotomic trace for symmetric monoidal categories, from: "Geometry and topology : Aarhus (1998)", Contemp. Math. 258, Amer. Math. Soc. (2000) 121

[11] B I Dundas, R Mccarthy, Topological Hochschild homology of ring functors and exact categories, J. Pure Appl. Algebra 109 (1996) 231

[12] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149

[13] J D S Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403

[14] S Maclane, Categories for the working mathematician, 5, Springer (1971)

[15] I Madsen, Algebraic K–theory and traces, from: "Current developments in mathematics, 1995 (Cambridge, MA)", Int. Press, Cambridge, MA (1994) 191

[16] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001) 441

[17] J P May, The geometry of iterated loop spaces, 271, Springer (1972)

[18] J P May, E∞ ring spaces and E∞ ring spectra, 577, Springer (1977) 268

[19] G Segal, Categories and cohomology theories, Topology 13 (1974) 293

[20] F Waldhausen, Algebraic K–theory of topological spaces I, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 35

[21] F Waldhausen, Algebraic K–theory of spaces, a manifold approach, from: "Current trends in algebraic topology, Part 1 (London, Ont., 1981)", CMS Conf. Proc. 2, Amer. Math. Soc. (1982) 141

[22] G W Whitehead, Elements of homotopy theory, 61, Springer (1978)

Cité par Sources :