Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be the units of a commutative ring spectrum . In this paper we identify the composition
where is the algebraic –theory and the topological Hochschild homology of . As a corollary we show that classes in not annihilated by the stable Hopf map give rise to non-trivial classes in for .
Schlichtkrull, Christian 1
@article{GT_2004_8_2_a4, author = {Schlichtkrull, Christian}, title = {Units of ring spectra and their traces in algebraic {K{\textendash}theory}}, journal = {Geometry & topology}, pages = {645--673}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2004}, doi = {10.2140/gt.2004.8.645}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.645/} }
TY - JOUR AU - Schlichtkrull, Christian TI - Units of ring spectra and their traces in algebraic K–theory JO - Geometry & topology PY - 2004 SP - 645 EP - 673 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.645/ DO - 10.2140/gt.2004.8.645 ID - GT_2004_8_2_a4 ER -
Schlichtkrull, Christian. Units of ring spectra and their traces in algebraic K–theory. Geometry & topology, Tome 8 (2004) no. 2, pp. 645-673. doi : 10.2140/gt.2004.8.645. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.645/
[1] Algebraic K–theory of topological K–theory, Acta Math. 188 (2002) 1
, ,[2] Two-vector bundles and forms of elliptic cohomology, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 18
, , ,[3] Γ+–structures I : A free group functor for stable homotopy theory, Topology 13 (1974) 25
, ,[4] Homotopy theory of Γ–spaces, spectra, and bisimplicial sets, from: "Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II", Lecture Notes in Math. 658, Springer (1978) 80
, ,[5] Homotopy limits, completions and localizations, 304, Springer (1972)
, ,[6] Topological Hochschild homology, preprint (1985)
,[7] The cyclotomic trace and algebraic K–theory of spaces, Invent. Math. 111 (1993) 465
, , ,[8] The map BSG→A(∗)→QS0, from: "Algebraic topology and algebraic K–theory (Princeton, N.J., 1983)", Ann. of Math. Stud. 113, Princeton Univ. Press (1987) 418
, ,[9] Topological Hochschild homology of Z∕pn, J. Pure Appl. Algebra 148 (2000) 29
,[10] The cyclotomic trace for symmetric monoidal categories, from: "Geometry and topology : Aarhus (1998)", Contemp. Math. 258, Amer. Math. Soc. (2000) 121
,[11] Topological Hochschild homology of ring functors and exact categories, J. Pure Appl. Algebra 109 (1996) 231
, ,[12] Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149
, , ,[13] Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403
,[14] Categories for the working mathematician, 5, Springer (1971)
,[15] Algebraic K–theory and traces, from: "Current developments in mathematics, 1995 (Cambridge, MA)", Int. Press, Cambridge, MA (1994) 191
,[16] Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001) 441
, , , ,[17] The geometry of iterated loop spaces, 271, Springer (1972)
,[18] E∞ ring spaces and E∞ ring spectra, 577, Springer (1977) 268
,[19] Categories and cohomology theories, Topology 13 (1974) 293
,[20] Algebraic K–theory of topological spaces I, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 35
,[21] Algebraic K–theory of spaces, a manifold approach, from: "Current trends in algebraic topology, Part 1 (London, Ont., 1981)", CMS Conf. Proc. 2, Amer. Math. Soc. (1982) 141
,[22] Elements of homotopy theory, 61, Springer (1978)
,Cité par Sources :