Finiteness properties of soluble arithmetic groups over global function fields
Geometry & topology, Tome 8 (2004) no. 2, pp. 611-644.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let G be a Chevalley group scheme and G a Borel subgroup scheme, both defined over . Let K be a global function field, S be a finite non-empty set of places over K, and OS be the corresponding S–arithmetic ring. Then, the S–arithmetic group (OS) is of type F|S|1 but not of type FP|S|. Moreover one can derive lower and upper bounds for the geometric invariants Σm((OS)). These are sharp if G has rank 1. For higher ranks, the estimates imply that normal subgroups of (OS) with abelian quotients, generically, satisfy strong finiteness conditions.

DOI : 10.2140/gt.2004.8.611
Keywords: arithmetic groups, soluble groups, finiteness properties, actions on buildings

Bux, Kai-Uwe 1

1 Cornell University, Department of Mathemtics, Malott Hall 310, Ithaca, New York 14853-4201, USA
@article{GT_2004_8_2_a3,
     author = {Bux, Kai-Uwe},
     title = {Finiteness properties of soluble arithmetic groups over global function fields},
     journal = {Geometry & topology},
     pages = {611--644},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.611},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.611/}
}
TY  - JOUR
AU  - Bux, Kai-Uwe
TI  - Finiteness properties of soluble arithmetic groups over global function fields
JO  - Geometry & topology
PY  - 2004
SP  - 611
EP  - 644
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.611/
DO  - 10.2140/gt.2004.8.611
ID  - GT_2004_8_2_a3
ER  - 
%0 Journal Article
%A Bux, Kai-Uwe
%T Finiteness properties of soluble arithmetic groups over global function fields
%J Geometry & topology
%D 2004
%P 611-644
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.611/
%R 10.2140/gt.2004.8.611
%F GT_2004_8_2_a3
Bux, Kai-Uwe. Finiteness properties of soluble arithmetic groups over global function fields. Geometry & topology, Tome 8 (2004) no. 2, pp. 611-644. doi : 10.2140/gt.2004.8.611. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.611/

[1] H Abels, Finite presentability of S–arithmetic groups. Compact presentability of solvable groups, 1261, Springer (1987)

[2] H Abels, K S Brown, Finiteness properties of solvable S–arithmetic groups : an example, from: "Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985)" (1987) 77

[3] H Abels, A Tiemeyer, Compactness properties of locally compact groups, Transform. Groups 2 (1997) 119

[4] H Åberg, Bieri–Strebel valuations (of finite rank), Proc. London Math. Soc. (3) 52 (1986) 269

[5] P Abramenko, Chevalleygruppen, manuscript, Frankfurt (1994)

[6] P Abramenko, Twin buildings and applications to S-arithmetic groups, 1641, Springer (1996)

[7] G Baumslag, W W Boone, B H Neumann, Some unsolvable problems about elements and subgroups of groups, Math. Scand. 7 (1959) 191

[8] H Behr, Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 7 (1969) 1

[9] H Behr, Arithmetic groups over function fields: A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups, preprint 92–033, SFB 343, Bielefield (1992)

[10] H Behr, Arithmetic groups over function fields I : A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups, J. Reine Angew. Math. 495 (1998) 79

[11] M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445

[12] R Bieri, Finiteness length and connectivity length for groups, from: "Geometric group theory down under (Canberra, 1996)", de Gruyter (1999) 9

[13] R Bieri, B Eckmann, Finiteness properties of duality groups, Comment. Math. Helv. 49 (1974) 74

[14] R Bieri, R Geoghegan, Connectivity properties of group actions on non-positively curved spaces, Mem. Amer. Math. Soc. 161 (2003)

[15] R Bieri, B Renz, Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv. 63 (1988) 464

[16] R Bieri, R Strebel, Valuations and finitely presented metabelian groups, Proc. London Math. Soc. (3) 41 (1980) 439

[17] A Borel, Linear algebraic groups, 126, Springer (1991)

[18] A Borel, J P Serre, Cohomologie d’immeubles et de groupes S–arithmétiques, Topology 15 (1976) 211

[19] K S Brown, Cohomology of groups, 87, Springer (1982)

[20] K S Brown, Finiteness properties of groups, from: "Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985)" (1987) 45

[21] K S Brown, Buildings, Springer (1989)

[22] F Bruhat, J Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. (1972) 5

[23] F Bruhat, J Tits, Groupes réductifs sur un corps local II : Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. (1984) 197

[24] K U Bux, Finiteness properties of certain metabelian arithmetic groups in the function field case, Proc. London Math. Soc. (3) 75 (1997) 308

[25] K U Bux, Endlichkeitseigenschaften auflösbarer arithmetischer Gruppen über Funktionenkörpern, PhD thesis, Frankfurt (1997)

[26] K U Bux, Finiteness properties of soluble S–arithmetic groups : a survey, from: "Groups: topological, combinatorial and arithmetic aspects", London Math. Soc. Lecture Note Ser. 311, Cambridge Univ. Press (2004) 64

[27] , Algebraic number theory, , Academic Press (1967)

[28] C Chevalley, Certains schémas de groupes semi-simples, from: "Séminaire Bourbaki, Vol. 6", Soc. Math. France (1995) 219

[29] , Group theory, Academic Press [Harcourt Brace Jovanovich Publishers] (1984)

[30] D H Kochloukova, The FPm–conjecture for a class of metabelian groups, J. Algebra 184 (1996) 1175

[31] H Meinert, The homological invariants for metabelian groups of finite Prüfer rank : a proof of the Σm–conjecture, Proc. London Math. Soc. (3) 72 (1996) 385

[32] H Meinert, Actions on 2–complexes and the homotopical invariant Σ2 of a group, J. Pure Appl. Algebra 119 (1997) 297

[33] B H Neumann, Some remarks on infinite groups, J. London. Math. Soc. 12 (1937) 120

[34] B Renz, Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen, PhD thesis, Frankfurt (1988)

[35] M Ronan, Lectures on buildings, 7, Academic Press (1989)

[36] J P Serre, Trees, Springer (1980)

[37] R Steinberg, Lectures on Chevalley groups, mimeographed notes, Yale University (1967)

[38] R Strebel, Finitely presented soluble groups, from: "Group theory", Academic Press (1984) 257

[39] U Stuhler, Zur Frage der endlichen Präsentierbarkeit gewisser arithmetischer Gruppen im Funktionenkörperfall, Math. Ann. 224 (1976) 217

[40] U Stuhler, Homological properties of certain arithmetic groups in the function field case, Invent. Math. 57 (1980) 263

[41] A Tiemeyer, A local-global principle for finiteness properties of S–arithmetic groups over number fields, Transform. Groups 2 (1997) 215

[42] J Tits, Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra 105 (1987) 542

[43] C T C Wall, Finiteness conditions for CW–complexes, Ann. of Math. (2) 81 (1965) 56

[44] C T C Wall, Homological group theory, 36, Cambridge University Press (1979)

[45] A Weil, Basic number theory, , Springer (1995)

Cité par Sources :