Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a Chevalley group scheme and a Borel subgroup scheme, both defined over . Let be a global function field, be a finite non-empty set of places over , and be the corresponding –arithmetic ring. Then, the –arithmetic group is of type but not of type . Moreover one can derive lower and upper bounds for the geometric invariants . These are sharp if has rank . For higher ranks, the estimates imply that normal subgroups of with abelian quotients, generically, satisfy strong finiteness conditions.
Bux, Kai-Uwe 1
@article{GT_2004_8_2_a3, author = {Bux, Kai-Uwe}, title = {Finiteness properties of soluble arithmetic groups over global function fields}, journal = {Geometry & topology}, pages = {611--644}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2004}, doi = {10.2140/gt.2004.8.611}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.611/} }
TY - JOUR AU - Bux, Kai-Uwe TI - Finiteness properties of soluble arithmetic groups over global function fields JO - Geometry & topology PY - 2004 SP - 611 EP - 644 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.611/ DO - 10.2140/gt.2004.8.611 ID - GT_2004_8_2_a3 ER -
Bux, Kai-Uwe. Finiteness properties of soluble arithmetic groups over global function fields. Geometry & topology, Tome 8 (2004) no. 2, pp. 611-644. doi : 10.2140/gt.2004.8.611. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.611/
[1] Finite presentability of S–arithmetic groups. Compact presentability of solvable groups, 1261, Springer (1987)
,[2] Finiteness properties of solvable S–arithmetic groups : an example, from: "Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985)" (1987) 77
, ,[3] Compactness properties of locally compact groups, Transform. Groups 2 (1997) 119
, ,[4] Bieri–Strebel valuations (of finite rank), Proc. London Math. Soc. (3) 52 (1986) 269
,[5] Chevalleygruppen, manuscript, Frankfurt (1994)
,[6] Twin buildings and applications to S-arithmetic groups, 1641, Springer (1996)
,[7] Some unsolvable problems about elements and subgroups of groups, Math. Scand. 7 (1959) 191
, , ,[8] Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 7 (1969) 1
,[9] Arithmetic groups over function fields: A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups, preprint 92–033, SFB 343, Bielefield (1992)
,[10] Arithmetic groups over function fields I : A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups, J. Reine Angew. Math. 495 (1998) 79
,[11] Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445
, ,[12] Finiteness length and connectivity length for groups, from: "Geometric group theory down under (Canberra, 1996)", de Gruyter (1999) 9
,[13] Finiteness properties of duality groups, Comment. Math. Helv. 49 (1974) 74
, ,[14] Connectivity properties of group actions on non-positively curved spaces, Mem. Amer. Math. Soc. 161 (2003)
, ,[15] Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv. 63 (1988) 464
, ,[16] Valuations and finitely presented metabelian groups, Proc. London Math. Soc. (3) 41 (1980) 439
, ,[17] Linear algebraic groups, 126, Springer (1991)
,[18] Cohomologie d’immeubles et de groupes S–arithmétiques, Topology 15 (1976) 211
, ,[19] Cohomology of groups, 87, Springer (1982)
,[20] Finiteness properties of groups, from: "Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985)" (1987) 45
,[21] Buildings, Springer (1989)
,[22] Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. (1972) 5
, ,[23] Groupes réductifs sur un corps local II : Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. (1984) 197
, ,[24] Finiteness properties of certain metabelian arithmetic groups in the function field case, Proc. London Math. Soc. (3) 75 (1997) 308
,[25] Endlichkeitseigenschaften auflösbarer arithmetischer Gruppen über Funktionenkörpern, PhD thesis, Frankfurt (1997)
,[26] Finiteness properties of soluble S–arithmetic groups : a survey, from: "Groups: topological, combinatorial and arithmetic aspects", London Math. Soc. Lecture Note Ser. 311, Cambridge Univ. Press (2004) 64
,[27] , Algebraic number theory, , Academic Press (1967)
[28] Certains schémas de groupes semi-simples, from: "Séminaire Bourbaki, Vol. 6", Soc. Math. France (1995) 219
,[29] , Group theory, Academic Press [Harcourt Brace Jovanovich Publishers] (1984)
[30] The FPm–conjecture for a class of metabelian groups, J. Algebra 184 (1996) 1175
,[31] The homological invariants for metabelian groups of finite Prüfer rank : a proof of the Σm–conjecture, Proc. London Math. Soc. (3) 72 (1996) 385
,[32] Actions on 2–complexes and the homotopical invariant Σ2 of a group, J. Pure Appl. Algebra 119 (1997) 297
,[33] Some remarks on infinite groups, J. London. Math. Soc. 12 (1937) 120
,[34] Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen, PhD thesis, Frankfurt (1988)
,[35] Lectures on buildings, 7, Academic Press (1989)
,[36] Trees, Springer (1980)
,[37] Lectures on Chevalley groups, mimeographed notes, Yale University (1967)
,[38] Finitely presented soluble groups, from: "Group theory", Academic Press (1984) 257
,[39] Zur Frage der endlichen Präsentierbarkeit gewisser arithmetischer Gruppen im Funktionenkörperfall, Math. Ann. 224 (1976) 217
,[40] Homological properties of certain arithmetic groups in the function field case, Invent. Math. 57 (1980) 263
,[41] A local-global principle for finiteness properties of S–arithmetic groups over number fields, Transform. Groups 2 (1997) 215
,[42] Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra 105 (1987) 542
,[43] Finiteness conditions for CW–complexes, Ann. of Math. (2) 81 (1965) 56
,[44] Homological group theory, 36, Cambridge University Press (1979)
,[45] Basic number theory, , Springer (1995)
,Cité par Sources :