The Gromov invariant and the Donaldson–Smith standard surface count
Geometry & topology, Tome 8 (2004) no. 2, pp. 565-610.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Simon Donaldson and Ivan Smith recently studied symplectic surfaces in symplectic 4–manifolds X by introducing an invariant DS associated to any Lefschetz fibration on blowups of X which counts holomorphic sections of a relative Hilbert scheme that is constructed from the fibration. Smith has shown that DS satisfies a duality relation identical to that satisfied by the Gromov invariant Gr introduced by Clifford Taubes, which led Smith to conjecture that DS = Gr provided that the fibration has high enough degree. This paper proves that conjecture. The crucial technical ingredient is an argument which allows us to work with curves C in the blown-up 4–manifold that are made holomorphic by an almost complex structure which is integrable near C and with respect to which the fibration is a pseudoholomorphic map.

DOI : 10.2140/gt.2004.8.565
Keywords: Pseudoholomorphic curves, symplectic Lefschetz fibrations, Gromov–Witten invariants

Usher, Michael 1

1 Department of Mathematics, MIT, Cambridge, Massachusetts 02139–4307, USA
@article{GT_2004_8_2_a2,
     author = {Usher, Michael},
     title = {The {Gromov} invariant and the {Donaldson{\textendash}Smith} standard surface count},
     journal = {Geometry & topology},
     pages = {565--610},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.565},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.565/}
}
TY  - JOUR
AU  - Usher, Michael
TI  - The Gromov invariant and the Donaldson–Smith standard surface count
JO  - Geometry & topology
PY  - 2004
SP  - 565
EP  - 610
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.565/
DO  - 10.2140/gt.2004.8.565
ID  - GT_2004_8_2_a2
ER  - 
%0 Journal Article
%A Usher, Michael
%T The Gromov invariant and the Donaldson–Smith standard surface count
%J Geometry & topology
%D 2004
%P 565-610
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.565/
%R 10.2140/gt.2004.8.565
%F GT_2004_8_2_a2
Usher, Michael. The Gromov invariant and the Donaldson–Smith standard surface count. Geometry & topology, Tome 8 (2004) no. 2, pp. 565-610. doi : 10.2140/gt.2004.8.565. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.565/

[1] D Auroux, L Katzarkov, Branched coverings of CP2 and invariants of symplectic 4–manifolds, Invent. Math. 142 (2000) 631

[2] S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205

[3] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, , The Clarendon Press Oxford University Press (1990)

[4] S Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743

[5] E N Ionel, T H Parker, The Gromov invariants of Ruan–Tian and Taubes, Math. Res. Lett. 4 (1997) 521

[6] S Ivashkovich, V Shevchishin, Gromov compactness theorem for stable curves

[7] D Mcduff, The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143

[8] D Mcduff, D Salamon, J–holomorphic curves and quantum cohomology, 6, American Mathematical Society (1994)

[9] Y Ruan, G Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995) 259

[10] Y Ruan, G Tian, Higher genus symplectic invariants and sigma models coupled with gravity, Invent. Math. 130 (1997) 455

[11] B Siebert, G Tian, Weierstrass polynomials and plane pseudo-holomorphic curves, Chinese Ann. Math. Ser. B 23 (2002) 1

[12] J C Sikorav, Some properties of holomorphic curves in almost complex manifolds, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 165

[13] I Smith, Lefschetz pencils and divisors in moduli space, Geom. Topol. 5 (2001) 579

[14] I Smith, Serre–Taubes duality for pseudoholomorphic curves, Topology 42 (2003) 931

[15] C H Taubes, Counting pseudo-holomorphic submanifolds in dimension 4, J. Differential Geom. 44 (1996) 818

[16] C H Taubes, Seiberg Witten and Gromov invariants for symplectic 4–manifolds, 2, International Press (2000)

[17] M Usher, Relative Hilbert scheme methods in pseudoholomorphic geometry, PhD thesis, MIT (2004)

Cité par Sources :