Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider the space of geodesic laminations on a surface, endowed with the Hausdorff metric and with a variation of this metric called the metric. We compute and/or estimate the Hausdorff dimensions of these two metrics. We also relate these two metrics to another metric which is combinatorially defined in terms of train tracks.
Zhu, Xiaodong 1 ; Bonahon, Francis 2
@article{GT_2004_8_2_a1, author = {Zhu, Xiaodong and Bonahon, Francis}, title = {The metric space of geodesic laminations on a surface: {I}}, journal = {Geometry & topology}, pages = {539--564}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2004}, doi = {10.2140/gt.2004.8.539}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.539/} }
TY - JOUR AU - Zhu, Xiaodong AU - Bonahon, Francis TI - The metric space of geodesic laminations on a surface: I JO - Geometry & topology PY - 2004 SP - 539 EP - 564 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.539/ DO - 10.2140/gt.2004.8.539 ID - GT_2004_8_2_a1 ER -
Zhu, Xiaodong; Bonahon, Francis. The metric space of geodesic laminations on a surface: I. Geometry & topology, Tome 8 (2004) no. 2, pp. 539-564. doi : 10.2140/gt.2004.8.539. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.539/
[1] Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24 (1985) 217
, ,[2] Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986) 71
,[3] The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139
,[4] Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103
,[5] Closed curves on surfaces, monograph in preparation
,[6] The metric space of geodesic laminations on a surface II: Small surfaces, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry (2004) 509
, ,[7] Automorphisms of surfaces after Nielsen and Thurston, 9, Cambridge University Press (1988)
, ,[8] Travaux de Thurston sur les surfaces, 66, Société Mathématique de France (1979) 284
, , ,[9] Fractal geometry, John Wiley Sons Ltd. (1990)
,[10] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[11] Introduction to the modern theory of dynamical systems, 54, Cambridge University Press (1995)
, ,[12] Geometry of the complex of curves I : Hyperbolicity, Invent. Math. 138 (1999) 103
, ,[13] Geometry of the complex of curves II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902
, ,[14] Examples of Poincaré duality groups, Proc. Amer. Math. Soc. 110 (1990) 1145
,[15] Combinatorial and geometrical aspects of hyperbolic 3–manifolds, from: "Kleinian groups and hyperbolic 3–manifolds (Warwick, 2001)", London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press (2003) 3
,[16] Topology: a first course, Prentice-Hall (1975)
,[17] Combinatorics of train tracks, 125, Princeton University Press (1992)
, ,[18] The geometry and topology of three-manifolds, lecture notes, Princeton University (1997–1980)
,[19] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988) 417
,[20] Minimal stretch maps between hyperbolic surfaces
,[21] Fractal dimensions of the space of geodesic laminations, PhD thesis, University of Southern California, Los Angeles (2000)
,Cité par Sources :