The metric space of geodesic laminations on a surface: I
Geometry & topology, Tome 8 (2004) no. 2, pp. 539-564.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider the space of geodesic laminations on a surface, endowed with the Hausdorff metric dH and with a variation of this metric called the dlog metric. We compute and/or estimate the Hausdorff dimensions of these two metrics. We also relate these two metrics to another metric which is combinatorially defined in terms of train tracks.

DOI : 10.2140/gt.2004.8.539
Keywords: Geodesic lamination, simple closed curve

Zhu, Xiaodong 1 ; Bonahon, Francis 2

1 NetScreen Technologies, Building 3, 805 11th Avenue, Sunnyvale, California 94089, USA
2 Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113, USA
@article{GT_2004_8_2_a1,
     author = {Zhu, Xiaodong and Bonahon, Francis},
     title = {The metric space of geodesic laminations on a surface: {I}},
     journal = {Geometry & topology},
     pages = {539--564},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.539},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.539/}
}
TY  - JOUR
AU  - Zhu, Xiaodong
AU  - Bonahon, Francis
TI  - The metric space of geodesic laminations on a surface: I
JO  - Geometry & topology
PY  - 2004
SP  - 539
EP  - 564
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.539/
DO  - 10.2140/gt.2004.8.539
ID  - GT_2004_8_2_a1
ER  - 
%0 Journal Article
%A Zhu, Xiaodong
%A Bonahon, Francis
%T The metric space of geodesic laminations on a surface: I
%J Geometry & topology
%D 2004
%P 539-564
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.539/
%R 10.2140/gt.2004.8.539
%F GT_2004_8_2_a1
Zhu, Xiaodong; Bonahon, Francis. The metric space of geodesic laminations on a surface: I. Geometry & topology, Tome 8 (2004) no. 2, pp. 539-564. doi : 10.2140/gt.2004.8.539. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.539/

[1] J S Birman, C Series, Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24 (1985) 217

[2] F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986) 71

[3] F Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139

[4] F Bonahon, Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103

[5] F Bonahon, Closed curves on surfaces, monograph in preparation

[6] F Bonahon, X Zhu, The metric space of geodesic laminations on a surface II: Small surfaces, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry (2004) 509

[7] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, 9, Cambridge University Press (1988)

[8] A Fathi, F Laudenbach, V Poénaru, Travaux de Thurston sur les surfaces, 66, Société Mathématique de France (1979) 284

[9] K Falconer, Fractal geometry, John Wiley Sons Ltd. (1990)

[10] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[11] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge University Press (1995)

[12] H A Masur, Y N Minsky, Geometry of the complex of curves I : Hyperbolicity, Invent. Math. 138 (1999) 103

[13] H A Masur, Y N Minsky, Geometry of the complex of curves II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902

[14] G Mess, Examples of Poincaré duality groups, Proc. Amer. Math. Soc. 110 (1990) 1145

[15] Y N Minsky, Combinatorial and geometrical aspects of hyperbolic 3–manifolds, from: "Kleinian groups and hyperbolic 3–manifolds (Warwick, 2001)", London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press (2003) 3

[16] J R Munkres, Topology: a first course, Prentice-Hall (1975)

[17] R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton University Press (1992)

[18] W P Thurston, The geometry and topology of three-manifolds, lecture notes, Princeton University (1997–1980)

[19] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988) 417

[20] W P Thurston, Minimal stretch maps between hyperbolic surfaces

[21] X Zhu, Fractal dimensions of the space of geodesic laminations, PhD thesis, University of Southern California, Los Angeles (2000)

Cité par Sources :