Parity of the spin structure defined by a quadratic differential
Geometry & topology, Tome 8 (2004) no. 2, pp. 511-538.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

According to the work of Kontsevich–Zorich, the invariant that classifies non-hyperelliptic connected components of the moduli spaces of Abelian differentials with prescribed singularities, is the parity of the spin structure.

We show that for the moduli space of quadratic differentials, the spin structure is constant on every stratum where it is defined. In particular this disproves the conjecture that it classifies the non-hyperelliptic connected components of the strata of quadratic differentials with prescribed singularities. An explicit formula for the parity of the spin structure is given.

DOI : 10.2140/gt.2004.8.511
Keywords: quadratic differentials, Teichmüller geodesic flow, moduli space, measured foliations, spin structure

Lanneau, Erwan 1

1 Institut de mathématiques de Luminy, Case 907, 163 Avenue de Luminy, F-13288 Marseille Cedex 9, France
@article{GT_2004_8_2_a0,
     author = {Lanneau, Erwan},
     title = {Parity of the spin structure defined by a quadratic differential},
     journal = {Geometry & topology},
     pages = {511--538},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     doi = {10.2140/gt.2004.8.511},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.511/}
}
TY  - JOUR
AU  - Lanneau, Erwan
TI  - Parity of the spin structure defined by a quadratic differential
JO  - Geometry & topology
PY  - 2004
SP  - 511
EP  - 538
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.511/
DO  - 10.2140/gt.2004.8.511
ID  - GT_2004_8_2_a0
ER  - 
%0 Journal Article
%A Lanneau, Erwan
%T Parity of the spin structure defined by a quadratic differential
%J Geometry & topology
%D 2004
%P 511-538
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.511/
%R 10.2140/gt.2004.8.511
%F GT_2004_8_2_a0
Lanneau, Erwan. Parity of the spin structure defined by a quadratic differential. Geometry & topology, Tome 8 (2004) no. 2, pp. 511-538. doi : 10.2140/gt.2004.8.511. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.511/

[1] C Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2 I, J. Reine Angew. Math. 183 (1941) 148

[2] M F Atiyah, Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. (4) 4 (1971) 47

[3] A Douady, J Hubbard, On the density of Strebel differentials, Invent. Math. 30 (1975) 175

[4] A Eskin, H Masur, A Zorich, Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel–Veech constants, Publ. Math. Inst. Hautes Études Sci. (2003) 61

[5] A Eskin, A Okounkov, Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math. 145 (2001) 59

[6] , Travaux de Thurston sur les surfaces, 66, Société Mathématique de France (1979) 284

[7] H M Farkas, I Kra, Riemann surfaces, 71, Springer (1992)

[8] R H Fox, R B Kershner, Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J. 2 (1936) 147

[9] J Hubbard, H Masur, Quadratic differentials and foliations, Acta Math. 142 (1979) 221

[10] D Johnson, Spin structures and quadratic forms on surfaces, J. London Math. Soc. (2) 22 (1980) 365

[11] M Kontsevich, Lyapunov exponents and Hodge theory, from: "The mathematical beauty of physics (Saclay, 1996)", Adv. Ser. Math. Phys. 24, World Sci. Publ., River Edge, NJ (1997) 318

[12] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631

[13] E Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv. 79 (2004) 471

[14] E Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008) 1

[15] H Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982) 169

[16] H Masur, J Smillie, Quadratic differentials with prescribed singularities and pseudo–Anosov diffeomorphisms, Comment. Math. Helv. 68 (1993) 289

[17] J W Milnor, Remarks concerning spin manifolds, from: "Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse)", Princeton Univ. Press (1965) 55

[18] D Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971) 181

[19] G Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979) 315

[20] W A Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982) 201

[21] W A Veech, Moduli spaces of quadratic differentials, J. Analyse Math. 55 (1990) 117

Cité par Sources :