Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
According to the work of Kontsevich–Zorich, the invariant that classifies non-hyperelliptic connected components of the moduli spaces of Abelian differentials with prescribed singularities, is the parity of the spin structure.
We show that for the moduli space of quadratic differentials, the spin structure is constant on every stratum where it is defined. In particular this disproves the conjecture that it classifies the non-hyperelliptic connected components of the strata of quadratic differentials with prescribed singularities. An explicit formula for the parity of the spin structure is given.
Lanneau, Erwan 1
@article{GT_2004_8_2_a0, author = {Lanneau, Erwan}, title = {Parity of the spin structure defined by a quadratic differential}, journal = {Geometry & topology}, pages = {511--538}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2004}, doi = {10.2140/gt.2004.8.511}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.511/} }
Lanneau, Erwan. Parity of the spin structure defined by a quadratic differential. Geometry & topology, Tome 8 (2004) no. 2, pp. 511-538. doi : 10.2140/gt.2004.8.511. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.511/
[1] Untersuchungen über quadratische Formen in Körpern der Charakteristik 2 I, J. Reine Angew. Math. 183 (1941) 148
,[2] Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. (4) 4 (1971) 47
,[3] On the density of Strebel differentials, Invent. Math. 30 (1975) 175
, ,[4] Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel–Veech constants, Publ. Math. Inst. Hautes Études Sci. (2003) 61
, , ,[5] Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math. 145 (2001) 59
, ,[6] , Travaux de Thurston sur les surfaces, 66, Société Mathématique de France (1979) 284
[7] Riemann surfaces, 71, Springer (1992)
, ,[8] Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J. 2 (1936) 147
, ,[9] Quadratic differentials and foliations, Acta Math. 142 (1979) 221
, ,[10] Spin structures and quadratic forms on surfaces, J. London Math. Soc. (2) 22 (1980) 365
,[11] Lyapunov exponents and Hodge theory, from: "The mathematical beauty of physics (Saclay, 1996)", Adv. Ser. Math. Phys. 24, World Sci. Publ., River Edge, NJ (1997) 318
,[12] Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631
, ,[13] Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv. 79 (2004) 471
,[14] Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008) 1
,[15] Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982) 169
,[16] Quadratic differentials with prescribed singularities and pseudo–Anosov diffeomorphisms, Comment. Math. Helv. 68 (1993) 289
, ,[17] Remarks concerning spin manifolds, from: "Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse)", Princeton Univ. Press (1965) 55
,[18] Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971) 181
,[19] Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979) 315
,[20] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982) 201
,[21] Moduli spaces of quadratic differentials, J. Analyse Math. 55 (1990) 117
,Cité par Sources :