Permutations, isotropy and smooth cyclic group actions on definite 4–manifolds
Geometry & topology, Tome 8 (2004) no. 1, pp. 475-509.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use the equivariant Yang–Mills moduli space to investigate the relation between the singular set, isotropy representations at fixed points, and permutation modules realized by the induced action on homology for smooth group actions on certain 4–manifolds.

DOI : 10.2140/gt.2004.8.475
Keywords: gauge theory, $4$–manifolds, group actions, Yang–Mills, moduli space

Hambleton, Ian 1 ; Tanase, Mihail 1

1 Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
@article{GT_2004_8_1_a10,
     author = {Hambleton, Ian and Tanase, Mihail},
     title = {Permutations, isotropy and smooth cyclic group actions on definite 4{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {475--509},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     doi = {10.2140/gt.2004.8.475},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.475/}
}
TY  - JOUR
AU  - Hambleton, Ian
AU  - Tanase, Mihail
TI  - Permutations, isotropy and smooth cyclic group actions on definite 4–manifolds
JO  - Geometry & topology
PY  - 2004
SP  - 475
EP  - 509
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.475/
DO  - 10.2140/gt.2004.8.475
ID  - GT_2004_8_1_a10
ER  - 
%0 Journal Article
%A Hambleton, Ian
%A Tanase, Mihail
%T Permutations, isotropy and smooth cyclic group actions on definite 4–manifolds
%J Geometry & topology
%D 2004
%P 475-509
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.475/
%R 10.2140/gt.2004.8.475
%F GT_2004_8_1_a10
Hambleton, Ian; Tanase, Mihail. Permutations, isotropy and smooth cyclic group actions on definite 4–manifolds. Geometry & topology, Tome 8 (2004) no. 1, pp. 475-509. doi : 10.2140/gt.2004.8.475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.475/

[1] E Bierstone, General position of equivariant maps, Trans. Amer. Math. Soc. 234 (1977) 447

[2] G E Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press (1972)

[3] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279

[4] S K Donaldson, The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397

[5] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)

[6] A L Edmonds, Aspects of group actions on four-manifolds, Topology Appl. 31 (1989) 109

[7] A L Edmonds, Periodic maps of composite order on positive definite 4–manifolds, Geom. Topol. 9 (2005) 315

[8] R Fintushel, T Lawson, Compactness of moduli spaces for orbifold instantons, Topology Appl. 23 (1986) 305

[9] R Fintushel, R J Stern, Pseudofree orbifolds, Ann. of Math. $(2)$ 122 (1985) 335

[10] D S Freed, K K Uhlenbeck, Instantons and four-manifolds, Mathematical Sciences Research Institute Publications 1, Springer (1991)

[11] I Hambleton, R Lee, Perturbation of equivariant moduli spaces, Math. Ann. 293 (1992) 17

[12] I Hambleton, R Lee, Smooth group actions on definite 4–manifolds and moduli spaces, Duke Math. J. 78 (1995) 715

[13] S Illman, Every proper smooth action of a Lie group is equivalent to a real analytic action: a contribution to Hilbert's fifth problem, from: "Prospects in topology (Princeton, NJ, 1994)", Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 189

[14] J N Mather, Stratifications and mappings, from: "Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971)", Academic Press (1973) 195

[15] J P Serre, Trees, Springer (1980)

[16] M Tanase, Smooth finite cyclic group actions on positive definite 4–manifolds, PhD thesis, McMaster University (2003)

Cité par Sources :