Extended Bloch group and the Cheeger–Chern–Simons class
Geometry & topology, Tome 8 (2004) no. 1, pp. 413-474.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define an extended Bloch group and show it is naturally isomorphic to H3(PSL(2, )δ; ). Using the Rogers dilogarithm function this leads to an exact simplicial formula for the universal Cheeger–Chern–Simons class on this homology group. It also leads to an independent proof of the analytic relationship between volume and Chern–Simons invariant of hyperbolic 3–manifolds conjectured by Neumann and Zagier and proved by Yoshida, as well as effective formulae for the Chern–Simons invariant of a hyperbolic 3–manifold.

DOI : 10.2140/gt.2004.8.413
Keywords: extended Bloch group, Cheeger–Chern–Simons class, hyperbolic, 3–manifold

Neumann, Walter D 1

1 Department of Mathematics, Barnard College, Columbia University, New York, New York 10027, USA
@article{GT_2004_8_1_a9,
     author = {Neumann, Walter D},
     title = {Extended {Bloch} group and the {Cheeger{\textendash}Chern{\textendash}Simons} class},
     journal = {Geometry & topology},
     pages = {413--474},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     doi = {10.2140/gt.2004.8.413},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.413/}
}
TY  - JOUR
AU  - Neumann, Walter D
TI  - Extended Bloch group and the Cheeger–Chern–Simons class
JO  - Geometry & topology
PY  - 2004
SP  - 413
EP  - 474
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.413/
DO  - 10.2140/gt.2004.8.413
ID  - GT_2004_8_1_a9
ER  - 
%0 Journal Article
%A Neumann, Walter D
%T Extended Bloch group and the Cheeger–Chern–Simons class
%J Geometry & topology
%D 2004
%P 413-474
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.413/
%R 10.2140/gt.2004.8.413
%F GT_2004_8_1_a9
Neumann, Walter D. Extended Bloch group and the Cheeger–Chern–Simons class. Geometry & topology, Tome 8 (2004) no. 1, pp. 413-474. doi : 10.2140/gt.2004.8.413. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.413/

[1] S Baseilhac, R Benedetti, QHI theory II: Dilogarithmic and quantum hyperbolic invariants of 3–manifolds with $\mathrm{PSL}(2,\mathbb{C})$–characters

[2] P J Callahan, M V Hildebrand, J R Weeks, A census of cusped hyperbolic 3–manifolds, Math. Comp. 68 (1999) 321

[3] J Cheeger, J Simons, Differential characters and geometric invariants, from: "Geometry and topology (College Park, Md., 1983/84)", Lecture Notes in Math. 1167, Springer (1985) 50

[4] D Coulson, O A Goodman, C D Hodgson, W D Neumann, Computing arithmetic invariants of 3–manifolds, Experiment. Math. 9 (2000) 127

[5] J L Dupont, The dilogarithm as a characteristic class for flat bundles, from: "Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985)" (1987) 137

[6] J L Dupont, F W Kamber, Cheeger–Chern–Simons classes of transversally symmetric foliations: dependence relations and eta-invariants, Math. Ann. 295 (1993) 449

[7] J L Dupont, C H Sah, Scissors congruences II, J. Pure Appl. Algebra 25 (1982) 159

[8] J L Dupont, C H Sah, Dilogarithm identities in conformal field theory and group homology, Comm. Math. Phys. 161 (1994) 265

[9] D B A Epstein, R C Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988) 67

[10] O Goodman, Snap

[11] R Meyerhoff, Hyperbolic 3–manifolds with equal volumes but different Chern–Simons invariants, from: "Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press (1986) 209

[12] R Meyerhoff, W D Neumann, An asymptotic formula for the eta invariants of hyperbolic 3–manifolds, Comment. Math. Helv. 67 (1992) 28

[13] W D Neumann, Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic 3–manifolds, from: "Topology '90 (Columbus, OH, 1990)", Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 243

[14] W D Neumann, Hilbert's 3rd problem and invariants of 3–manifolds, from: "The Epstein birthday schrift", Geom. Topol. Monogr. 1, Geom. Topol. Publ., Coventry (1998) 383

[15] W D Neumann, J Yang, Bloch invariants of hyperbolic 3–manifolds, Duke Math. J. 96 (1999) 29

[16] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307

[17] W D Neumann, Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413

[18] C Petronio, J R Weeks, Partially flat ideal triangulations of cusped hyperbolic 3–manifolds, Osaka J. Math. 37 (2000) 453

[19] U Pachner, P.L. homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991) 129

[20] C H Sah, Scissors congruences I: The Gauss–Bonnet map, Math. Scand. 49 (1981)

[21] A A Suslin, Algebraic $K$–theory of fields, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986)", Amer. Math. Soc. (1987) 222

[22] J Weeks, Snappea

[23] W P Thurston, The geometry and topology of 3–manifolds, mimeographed lecture notes, Princeton University (1977)

[24] T Yoshida, The $\eta$–invariant of hyperbolic 3–manifolds, Invent. Math. 81 (1985) 473

Cité par Sources :