Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the second in a series of papers studying the relationship between Rohlin’s theorem and gauge theory. We discuss an invariant of a homology defined by Furuta and Ohta as an analogue of Casson’s invariant for homology 3–spheres. Our main result is a calculation of the Furuta–Ohta invariant for the mapping torus of a finite-order diffeomorphism of a homology sphere. The answer is the equivariant Casson invariant (Collin–Saveliev 2001) if the action has fixed points, and a version of the Boyer–Nicas (1990) invariant if the action is free. We deduce, for finite-order mapping tori, the conjecture of Furuta and Ohta that their invariant reduces mod 2 to the Rohlin invariant of a manifold carrying a generator of the third homology group. Under some transversality assumptions, we show that the Furuta–Ohta invariant coincides with the Lefschetz number of the action on Floer homology. Comparing our two answers yields an example of a diffeomorphism acting trivially on the representation variety but non-trivially on Floer homology.
Ruberman, Daniel 1 ; Saveliev, Nikolai 2
@article{GT_2004_8_1_a1, author = {Ruberman, Daniel and Saveliev, Nikolai}, title = {Rohlin{\textquoteright}s invariant and gauge theory {II.} {Mapping} tori}, journal = {Geometry & topology}, pages = {35--76}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2004}, doi = {10.2140/gt.2004.8.35}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.35/} }
TY - JOUR AU - Ruberman, Daniel AU - Saveliev, Nikolai TI - Rohlin’s invariant and gauge theory II. Mapping tori JO - Geometry & topology PY - 2004 SP - 35 EP - 76 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.35/ DO - 10.2140/gt.2004.8.35 ID - GT_2004_8_1_a1 ER -
Ruberman, Daniel; Saveliev, Nikolai. Rohlin’s invariant and gauge theory II. Mapping tori. Geometry & topology, Tome 8 (2004) no. 1, pp. 35-76. doi : 10.2140/gt.2004.8.35. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.35/
[1] A fake compact contractible 4–manifold, J. Differential Geom. 33 (1991) 335
,[2] Universal formulae for $\mathrm{SU}(n)$ Casson invariants of knots, Trans. Amer. Math. Soc. 352 (2000) 3149
, ,[3] Varieties of group representations and Casson's invariant for rational homology 3–spheres, Trans. Amer. Math. Soc. 322 (1990) 507
, ,[4] Surgery formulae for Casson's invariant and extensions to homology lens spaces, J. Reine Angew. Math. 405 (1990) 181
, ,[5] Floer's work on instanton homology, knots and surgery, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 195
, ,[6] The Smith conjecture in dimension four and equivariant gauge theory, Forum Math. 5 (1993) 299
, ,[7] Equivariant Casson invariants via gauge theory, J. Reine Angew. Math. 541 (2001) 143
, ,[8] The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397
,[9] Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)
,[10] Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. $(3)$ 61 (1990) 109
, ,[11] Knots and periodic transformations, from: "Topology of 3–manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)", Prentice-Hall (1962) 177
,[12] An intersection homology invariant for knots in a rational homology 3–sphere, Topology 33 (1994) 123
, ,[13] Differentiable structures on punctured 4–manifolds, Topology Appl. 51 (1993) 291
, ,[14] 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)
, ,[15] Flat connections, the Alexander invariant, and Casson's invariant, Comm. Anal. Geom. 5 (1997) 93
,[16] Legendrian cobordism and Chern–Simons theory on 3–manifolds with boundary, Comm. Anal. Geom. 2 (1994) 337
,[17] Transversality for equivariant exact 1–forms and gauge theory on 3–manifolds, Adv. Math. 200 (2006) 245
,[18] Polynomial invariants of knots of codimension two, Ann. of Math. $(2)$ 84 (1966) 537
,[19] Casson's knot invariant and gauge theory, Topology Appl. 112 (2001) 111
,[20] Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990) 58
, ,[21] An invariant of plumbed homology spheres, from: "Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979)", Lecture Notes in Math. 788, Springer (1980) 125
,[22] Notes on Seiberg–Witten theory, Graduate Studies in Mathematics 28, American Mathematical Society (2000)
,[23] Doubly slice knots and the Casson–Gordon invariants, Trans. Amer. Math. Soc. 279 (1983) 569
,[24] Rohlin's invariant and gauge theory I: Homology 3–tori, Comment. Math. Helv. 79 (2004) 618
, ,[25] Seiberg–Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers, from: "Proceedings of 6th Gökova Geometry–Topology Conference" (1999) 117
,[26] Floer homology of Brieskorn homology spheres, J. Differential Geom. 53 (1999) 15
,[27] Representation spaces of Seifert fibered homology spheres, Topology Appl. 126 (2002) 49
,[28] A note on Akbulut corks, Math. Res. Lett. 10 (2003) 777
,[29] On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3–spheres, from: "Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979)", Lecture Notes in Math. 788, Springer (1980) 172
,[30] Casson's invariant and gauge theory, J. Differential Geom. 31 (1990) 547
,[31] Moduli spaces over manifolds with involutions, Math. Ann. 296 (1993) 119
,Cité par Sources :