Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that, like the Seiberg–Witten monopole homology, the Heegaard Floer homology for a three-manifold determines its Thurston norm. As a consequence, we show that knot Floer homology detects the genus of a knot. This leads to new proofs of certain results previously obtained using Seiberg–Witten monopole Floer homology (in collaboration with Kronheimer and Mrowka). It also leads to a purely Morse-theoretic interpretation of the genus of a knot. The method of proof shows that the canonical element of Heegaard Floer homology associated to a weakly symplectically fillable contact structure is non-trivial. In particular, for certain three-manifolds, Heegaard Floer homology gives obstructions to the existence of taut foliations.
Ozsvath, Peter 1 ; Szabo, Zoltan 2
@article{GT_2004_8_1_a7, author = {Ozsvath, Peter and Szabo, Zoltan}, title = {Holomorphic disks and genus bounds}, journal = {Geometry & topology}, pages = {311--334}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2004}, doi = {10.2140/gt.2004.8.311}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.311/} }
Ozsvath, Peter; Szabo, Zoltan. Holomorphic disks and genus bounds. Geometry & topology, Tome 8 (2004) no. 1, pp. 311-334. doi : 10.2140/gt.2004.8.311. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.311/
[1] Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001) 319
, ,[2] Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205
,[3] A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277
,[4] Convex symplectic manifolds, from: "Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989)", Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 135
, ,[5] Confoliations, University Lecture Series 13, American Mathematical Society (1998)
, ,[6] On symplectic fillings, Algebr. Geom. Topol. 4 (2004) 73
,[7] On symplectic cobordisms, Math. Ann. 323 (2002) 31
, ,[8] Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445
,[9] Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479
,[10] Explicit concave fillings of contact three-manifolds, Math. Proc. Cambridge Philos. Soc. 133 (2002) 431
,[11] Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002)", Higher Ed. Press (2002) 405
,[12] 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)
, ,[13] Some aspects of classical knot theory, from: "Knot theory (Proc. Sem., Plans-sur–Bex, 1977)", Lecture Notes in Math. 685, Springer (1978) 1
,[14] Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371
, ,[15] On knots, Annals of Mathematics Studies 115, Princeton University Press (1987)
,[16] Floer homology for Seiberg–Witten Monopoles, in preparation
, ,[17] Monopoles and contact structures, Invent. Math. 130 (1997) 209
, ,[18] Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931
, ,[19] Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457
, , , ,[20] Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998) 103
,[21] Seifert fibered contact three-manifolds via surgery, Algebr. Geom. Topol. 4 (2004) 199
, ,[22] Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509
, ,[23] A unique decomposition theorem for 3–manifolds, Amer. J. Math. 84 (1962) 1
,[24] On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds, Geom. Topol. 9 (2005) 991
,[25] Simple singularities and topology of symplectically filling 4–manifold, Comment. Math. Helv. 74 (1999) 575
, ,[26] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159
, ,[27] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027
, ,[28] Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326
, ,[29] On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281
, ,[30] Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39
, ,[31] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58
, ,[32] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179
, ,[33] Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225
, ,[34] Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1
, ,[35] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[36] The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809
,[37] More constraints on symplectic forms from Seiberg–Witten invariants, Math. Res. Lett. 2 (1995) 9
,[38] Seiberg Witten and Gromov invariants for symplectic 4–manifolds, First International Press Lecture Series 2, International Press (2000)
,[39] A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)
,[40] Torsion invariants of $\mathrm{Spin}^c$–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679
,[41] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769
,Cité par Sources :