Witten’s conjecture and Property P
Geometry & topology, Tome 8 (2004) no. 1, pp. 295-310.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let K be a non-trivial knot in the 3–sphere and let Y be the 3–manifold obtained by surgery on K with surgery-coefficient 1. Using tools from gauge theory and symplectic topology, it is shown that the fundamental group of Y admits a non-trivial homomorphism to the group SO(3). In particular, Y cannot be a homotopy-sphere.

DOI : 10.2140/gt.2004.8.295
Keywords: 3–manifold, knot, surgery, homotopy sphere, gauge theory

Kronheimer, Peter B 1 ; Mrowka, Tomasz S 2

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
@article{GT_2004_8_1_a6,
     author = {Kronheimer, Peter B and Mrowka, Tomasz S},
     title = {Witten{\textquoteright}s conjecture and {Property} {P}},
     journal = {Geometry & topology},
     pages = {295--310},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     doi = {10.2140/gt.2004.8.295},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.295/}
}
TY  - JOUR
AU  - Kronheimer, Peter B
AU  - Mrowka, Tomasz S
TI  - Witten’s conjecture and Property P
JO  - Geometry & topology
PY  - 2004
SP  - 295
EP  - 310
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.295/
DO  - 10.2140/gt.2004.8.295
ID  - GT_2004_8_1_a6
ER  - 
%0 Journal Article
%A Kronheimer, Peter B
%A Mrowka, Tomasz S
%T Witten’s conjecture and Property P
%J Geometry & topology
%D 2004
%P 295-310
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.295/
%R 10.2140/gt.2004.8.295
%F GT_2004_8_1_a6
Kronheimer, Peter B; Mrowka, Tomasz S. Witten’s conjecture and Property P. Geometry & topology, Tome 8 (2004) no. 1, pp. 295-310. doi : 10.2140/gt.2004.8.295. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.295/

[1] S Akbulut, J D Mccarthy, Casson's invariant for oriented homology 3–spheres, Mathematical Notes 36, Princeton University Press (1990)

[2] R H Bing, Correction to “Necessary and sufficient conditions that a 3–manifold be $S^{3}$”, Ann. of Math. $(2)$ 77 (1963) 210

[3] R H Bing, J M Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971) 217

[4] P J Braam, S K Donaldson, Floer's work on instanton homology, knots and surgery, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 195

[5] P J Braam, S K Donaldson, Fukaya–Floer homology and gluing formulae for polynomial invariants, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 257

[6] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237

[7] S K Donaldson, Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)

[8] Y Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277

[9] Y M Eliashberg, W P Thurston, Confoliations, University Lecture Series 13, American Mathematical Society (1998)

[10] J B Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004) 73

[11] J B Etnyre, K Honda, On symplectic cobordisms, Math. Ann. 323 (2002) 31

[12] P M N Feehan, T G Leness, On Donaldson and Seiberg–Witten invariants, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 237

[13] A Floer, Instanton homology and Dehn surgery, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 77

[14] K Fukaya, Floer homology for oriented 3–manifolds, from: "Aspects of low-dimensional manifolds", Adv. Stud. Pure Math. 20, Kinokuniya (1992) 1

[15] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[16] D Gabai, Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479

[17] E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002)", Higher Ed. Press (2002) 405

[18] C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371

[19] , Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[20] P B Kronheimer, T S Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Differential Geom. 41 (1995) 573

[21] C H Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809

[22] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769

Cité par Sources :