Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a non-trivial knot in the –sphere and let be the –manifold obtained by surgery on with surgery-coefficient . Using tools from gauge theory and symplectic topology, it is shown that the fundamental group of admits a non-trivial homomorphism to the group . In particular, cannot be a homotopy-sphere.
Kronheimer, Peter B 1 ; Mrowka, Tomasz S 2
@article{GT_2004_8_1_a6, author = {Kronheimer, Peter B and Mrowka, Tomasz S}, title = {Witten{\textquoteright}s conjecture and {Property} {P}}, journal = {Geometry & topology}, pages = {295--310}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2004}, doi = {10.2140/gt.2004.8.295}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.295/} }
Kronheimer, Peter B; Mrowka, Tomasz S. Witten’s conjecture and Property P. Geometry & topology, Tome 8 (2004) no. 1, pp. 295-310. doi : 10.2140/gt.2004.8.295. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.295/
[1] Casson's invariant for oriented homology 3–spheres, Mathematical Notes 36, Princeton University Press (1990)
, ,[2] Correction to “Necessary and sufficient conditions that a 3–manifold be $S^{3}$”, Ann. of Math. $(2)$ 77 (1963) 210
,[3] Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971) 217
, ,[4] Floer's work on instanton homology, knots and surgery, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 195
, ,[5] Fukaya–Floer homology and gluing formulae for polynomial invariants, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 257
, ,[6] Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237
, , , ,[7] Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)
,[8] A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277
,[9] Confoliations, University Lecture Series 13, American Mathematical Society (1998)
, ,[10] On symplectic fillings, Algebr. Geom. Topol. 4 (2004) 73
,[11] On symplectic cobordisms, Math. Ann. 323 (2002) 31
, ,[12] On Donaldson and Seiberg–Witten invariants, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 237
, ,[13] Instanton homology and Dehn surgery, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 77
,[14] Floer homology for oriented 3–manifolds, from: "Aspects of low-dimensional manifolds", Adv. Stud. Pure Math. 20, Kinokuniya (1992) 1
,[15] Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445
,[16] Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479
,[17] Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002)", Higher Ed. Press (2002) 405
,[18] Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371
, ,[19] , Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35
[20] Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Differential Geom. 41 (1995) 573
, ,[21] The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809
,[22] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769
,Cité par Sources :