Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that any compact symplectic manifold with boundary embeds as a domain into a closed symplectic manifold, provided that there exists a contact plane on which is weakly compatible with , i.e. the restriction | does not vanish and the contact orientation of and its orientation as the boundary of the symplectic manifold coincide. This result provides a useful tool for new applications by Ozsváth–Szabó of Seiberg–Witten Floer homology theories in three-dimensional topology and has helped complete the Kronheimer–Mrowka proof of Property P for knots.
Eliashberg, Yakov 1
@article{GT_2004_8_1_a5, author = {Eliashberg, Yakov}, title = {A few remarks about symplectic filling}, journal = {Geometry & topology}, pages = {277--293}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2004}, doi = {10.2140/gt.2004.8.277}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.277/} }
Eliashberg, Yakov. A few remarks about symplectic filling. Geometry & topology, Tome 8 (2004) no. 1, pp. 277-293. doi : 10.2140/gt.2004.8.277. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.277/
[1] Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001) 319
, ,[2] On the topology of compact Stein surfaces, Int. Math. Res. Not. (2002) 769
, ,[3] Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978) 174
,[4] Stein small deformations of strictly pseudoconvex surfaces, from: "Birational algebraic geometry (Baltimore, MD, 1996)", Contemp. Math. 207, Amer. Math. Soc. (1997) 25
, ,[5] On the group of automorphisms of a symplectic manifold, from: "Problems in analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969)", Princeton Univ. Press (1970) 1
,[6] On symplectic manifolds with some contact properties, J. Differential Geom. 33 (1991) 233
,[7] Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)", London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45
,[8] Unique holomorphically fillable contact structure on the 3–torus, Internat. Math. Res. Notices (1996) 77
,[9] Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29
,[10] Confoliations, University Lecture Series 13, American Mathematical Society (1998)
, ,[11] Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609
, ,[12] On symplectic cobordisms, Math. Ann. 323 (2002) 31
, ,[13] Explicit concave fillings of contact three-manifolds, Math. Proc. Cambridge Philos. Soc. 133 (2002) 431
,[14] Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002)", Higher Ed. Press (2002) 405
,[15] Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177
,[16] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[17] The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983) 221
,[18] Signatures of foliated surface bundles and the symplectomorphism groups of surfaces, Topology 44 (2005) 131
, ,[19] Monopoles and contact structures, Invent. Math. 130 (1997) 209
, ,[20] Witten's conjecture and property P, Geom. Topol. 8 (2004) 295
, ,[21] Symplectic diffeomorphisms as isometries of Hofer's norm, Topology 36 (1997) 711
, ,[22] Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509
, ,[23] An infinite family of tight, not semi-fillable contact three-manifolds, Geom. Topol. 7 (2003) 1055
, ,[24] Compact Stein surfaces with boundary as branched covers of $B^4$, Invent. Math. 143 (2001) 325
, ,[25] Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991) 651
,[26] Simple singularities and topology of symplectically filling 4–manifold, Comment. Math. Helv. 74 (1999) 575
, ,[27] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311
, ,[28] Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467
,[29] Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241
,Cité par Sources :