A few remarks about symplectic filling
Geometry & topology, Tome 8 (2004) no. 1, pp. 277-293.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that any compact symplectic manifold (W,ω) with boundary embeds as a domain into a closed symplectic manifold, provided that there exists a contact plane ξ on W which is weakly compatible with ω, i.e. the restriction ω | ξ does not vanish and the contact orientation of W and its orientation as the boundary of the symplectic manifold W coincide. This result provides a useful tool for new applications by Ozsváth–Szabó of Seiberg–Witten Floer homology theories in three-dimensional topology and has helped complete the Kronheimer–Mrowka proof of Property P for knots.

DOI : 10.2140/gt.2004.8.277
Keywords: contact manifold, symplectic filling, symplectic Lefschetz fibration, open book decomposition

Eliashberg, Yakov 1

1 Department of Mathematics, Stanford University, Stanford, California 94305-2125, USA
@article{GT_2004_8_1_a5,
     author = {Eliashberg, Yakov},
     title = {A few remarks about symplectic filling},
     journal = {Geometry & topology},
     pages = {277--293},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     doi = {10.2140/gt.2004.8.277},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.277/}
}
TY  - JOUR
AU  - Eliashberg, Yakov
TI  - A few remarks about symplectic filling
JO  - Geometry & topology
PY  - 2004
SP  - 277
EP  - 293
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.277/
DO  - 10.2140/gt.2004.8.277
ID  - GT_2004_8_1_a5
ER  - 
%0 Journal Article
%A Eliashberg, Yakov
%T A few remarks about symplectic filling
%J Geometry & topology
%D 2004
%P 277-293
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.277/
%R 10.2140/gt.2004.8.277
%F GT_2004_8_1_a5
Eliashberg, Yakov. A few remarks about symplectic filling. Geometry & topology, Tome 8 (2004) no. 1, pp. 277-293. doi : 10.2140/gt.2004.8.277. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.277/

[1] S Akbulut, B Ozbagci, Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001) 319

[2] S Akbulut, B Ozbagci, On the topology of compact Stein surfaces, Int. Math. Res. Not. (2002) 769

[3] A Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978) 174

[4] F A Bogomolov, B De Oliveira, Stein small deformations of strictly pseudoconvex surfaces, from: "Birational algebraic geometry (Baltimore, MD, 1996)", Contemp. Math. 207, Amer. Math. Soc. (1997) 25

[5] E Calabi, On the group of automorphisms of a symplectic manifold, from: "Problems in analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969)", Princeton Univ. Press (1970) 1

[6] Y Eliashberg, On symplectic manifolds with some contact properties, J. Differential Geom. 33 (1991) 233

[7] Y Eliashberg, Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)", London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45

[8] Y Eliashberg, Unique holomorphically fillable contact structure on the 3–torus, Internat. Math. Res. Notices (1996) 77

[9] Y Eliashberg, Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29

[10] Y M Eliashberg, W P Thurston, Confoliations, University Lecture Series 13, American Mathematical Society (1998)

[11] J B Etnyre, K Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609

[12] J B Etnyre, K Honda, On symplectic cobordisms, Math. Ann. 323 (2002) 31

[13] D T Gay, Explicit concave fillings of contact three-manifolds, Math. Proc. Cambridge Philos. Soc. 133 (2002) 431

[14] E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002)", Higher Ed. Press (2002) 405

[15] R E Gompf, Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177

[16] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[17] J Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983) 221

[18] D Kotschick, S Morita, Signatures of foliated surface bundles and the symplectomorphism groups of surfaces, Topology 44 (2005) 131

[19] P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209

[20] P B Kronheimer, T S Mrowka, Witten's conjecture and property P, Geom. Topol. 8 (2004) 295

[21] F Lalonde, L Polterovich, Symplectic diffeomorphisms as isometries of Hofer's norm, Topology 36 (1997) 711

[22] P Lisca, G Matić, Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509

[23] P Lisca, A I Stipsicz, An infinite family of tight, not semi-fillable contact three-manifolds, Geom. Topol. 7 (2003) 1055

[24] A Loi, R Piergallini, Compact Stein surfaces with boundary as branched covers of $B^4$, Invent. Math. 143 (2001) 325

[25] D Mcduff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991) 651

[26] H Ohta, K Ono, Simple singularities and topology of symplectically filling 4–manifold, Comment. Math. Helv. 74 (1999) 575

[27] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[28] W P Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467

[29] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241

Cité par Sources :